GYRHX711-1 Datasheet | Version 1.2 | Nov 24, 2025

24-bit Analog to Digital (ADC)

Module Description
Features Pin
Description
Applications
Technical Information
Schematic
Package

GYRHX711-1

24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales

HX711 Dual-Channel 24 Bit Precision LOAD AMPLIFIER

Description

This module is a precision 24-bit analog-to-digital converter (ADC) crafted for weigh scales and industrial control applications like A/D weight pressure sensor, Pressure, Force and Flex sensor. Tailored to interface directly with bridge sensors, its input multiplexer allows selection between Channel A and B, each offering specific gains. Channel A, programmable with gains of 128 or 64, corresponds to ±20mV or ±40mV full-scale differential input voltage when connected to a 5V supply. Channel B features a fixed gain of 32. With a low-noise programmable gain amplifier, on-chip power supply regulator, and flexible clock input from external sources, crystals, or an on-chip oscillator, the HX711 excels in delivering precise measurements without the need for external components. The integrated power-on-reset circuitry simplifies digital interface initialization, making it an ideal choice for applications demanding accuracy, reliability, and ease of integration.

Features

HX711

- Two selectable differential input channels Channel A and Channel B · On-chip active low noise PGA (Programmable Gate Array) with selectable gain of 32, 64 and 128
- On-chip power supply regulator for load-cell and ADC (Analog to Digital Converter) analog power supply
- On-chip oscillator requiring no external component with optional external crystal
- On-chip power-on-reset
- Simple digital control and serial interface: pin-driven controls, no programming needed
- Selectable 10SPS (Samples per second) or 80SPS output data rate
- Simultaneous 50 and 60Hz supply rejection
- Current consumption including on-chip analog power supply regulator: normal operation
- <1.5mA, power down < 1uA
- Operation supply voltage range:2.6 ~ 5.5V
- Operation temperature range:-40 ~ +85°C

Module

- Multi input Channel A and Channel B
- Channel A and Channel B resolution 64 or 128 bits
- Operation supply voltage range:2.6 ~ 5.5V
- Operation temperature range: -40 ~ +85°C

Pin Description

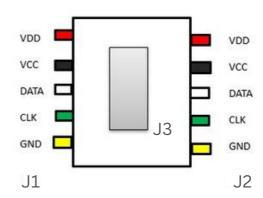


Figure: Pin Diagram

Table 1 - J1 Pin Description

Pin #	Name	Function	Description		
1	VDD	Power	Regulator supply: 2.6 ~ 5.5V		
2	VCC	Ground	Voltage Common collector		
3	DATA	Analog Input	Channel A negative input		
4	CLK	Analog Input	Channel A positive input		
5	GND	Ground	Ground		

Table 2 - J2 Pin Description

Pin #	Name	Function	Description
1	VDD	Power	Regulator supply: 2.6 ~ 5.5V
2	VCC	Ground	Voltage Common collector
3	DATA	Digital Output	Serial data output
4	CLK	Digital Input	Power down control (high active) and serial clock input
5	GND	Ground	Ground

Table 3 - J3 Pin Description

Pin #	Name	Function	Description
1	DATA	Analog Input	Channel B negative input
2	CLK	Analog Input	Channel B positive input

Applications

Weigh Scales

Industrial Process Control

Load Monitoring Systems Material

testing and research Automated

Dispensing System

Fitness and Sports Equipment

Gyrfalcon IntelliEdge Solutions DIGITIZE | DIGITALIZE | AUTOMATE

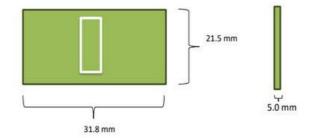
GYRHX711-1

Table 4 Key Electrical Characteristics

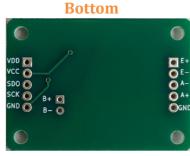
Parameter	Notes	MIN	TYP	MAX	Unit
Full scale differential Input range	V(inp) V(inn)	± 0.5(AVDD/GAIN)			V
Common mode input		GND+1.2 VDD-1.3			V
Output data rate	Internal Oscillator, RATE = 0	10			
	Internal Oscillator, RATE = VDD	80			
	Crystal or external clock, RATE = 0	fclk/1,105,920			Hz
	Crystal or external clock, RATE = VDD	fclk	/138,240		
Output data	2's complement	800000	71	FFFF	HEX
Output settling	RATE = 0	400		ms	
time(1)	RATE = VDD		50		
Input offset	Gain = 128	0.2			mV
drift	Gain = 64		0.4		
Input Noise	Gain = 128, RATE = 0	50 90			nV(rms)
input Noise	Gain = 128, RATE = VDD				
Temperature drift	Input offset (Gain = 128)	±6		nV/°C	
	Gain (Gain = 128)	±5		ppm/°C	
Input common mode rejection	Input common mode Gain (Gain = 128) 100			dB	
Power supply rejection	Gain = 128, RATE = 0	100		dB	
Reference bypass (VBG)		1.25		V	
Crystal or external clock frequency		1 11.0592 20		MHz	
Power supply voltage	VDD	2.6 5.5		V	
Analog	Normal		1400		
supply current (including regulator)	Power down		0.3		uA
Digital	Normal		100		uA
supply current	Power down	0.2			

Abbreviations in Table 4

V(inp) - Inverting Input Voltage


V(inn) - Non-Inverting Input Voltage

VBG - Voltage Band Gap


Reference PCB board Schematic

Package Description

contact@GyrfalconIntelliEdge.com