

E-paper Display Series

GDEY0213B74

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard			
Description	2.13" E-PAPER DISPLAY			
Model Name	GDEY0213B74			
Date	2021/03/17			
Revision	1.0			

Design Engineering					
	Approval Check Design				
	宝刘印玉	心李	之矣 印良		

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	MAR.17.2021	New Creation	ALL	

CONTENTS

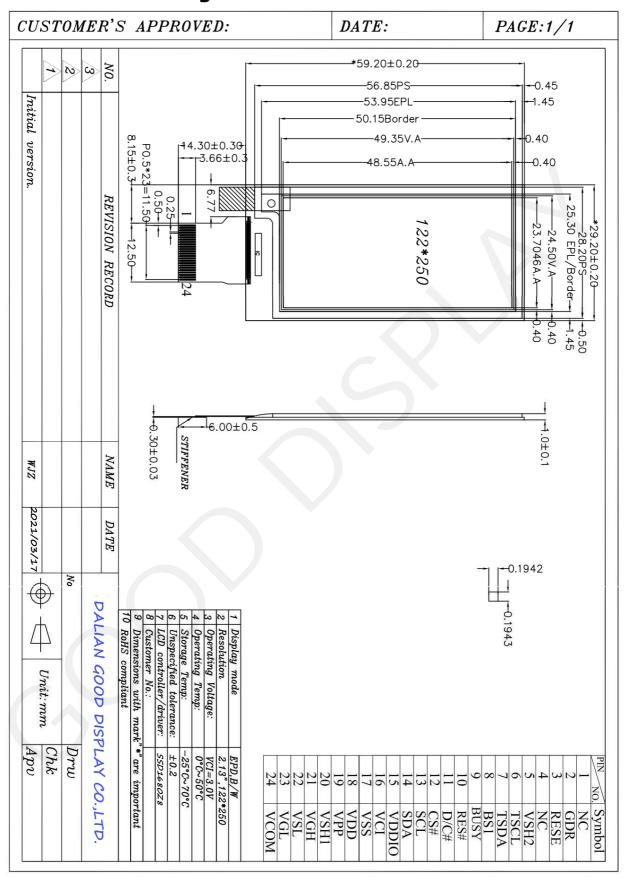
1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	10
	6.3 Panel AC Characteristics	11
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.3.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	25
9.	Handling, Safety, and Environment Requirements	26
10.	Reliability Test	27

11.	Block Diagram	28
12.	Reference Circuit	29
13.	Matched Development Kit	30
14.	Typical Operating Sequence	31
	14.1 Normal Operation Flow	31
15.	Inspection condition	32
	15.1 Environment	
	15.2 Illuminance	32
	15.3 Inspect method	
	15.4 Display area	32
	15.5 Inspection standard	33
	15.5.1 Electric inspection standard	33
	15.5.2 Appearance inspection standard	34
16.	Packaging	36
17.	Precautions	37

1. Over View

GDEY0213B74 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The2.13inch active area contains 250×122 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features


- 250×122 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	Dpi:130
Active Area	23.7046×48.55 mm		
Pixel Pitch	0.1943×0.1942 mm		
Pixel Configuration	Square		
Outline Dimension	29.2(H)×59.2 (V) ×1.0(D)	mm	
Weight	3.2±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark			
1	NC		Do not connect with other NC pins	Keep Open			
2	GDR	О	N-Channel MOSFET Gate Drive Control				
3	RESE	I	Current Sense Input for the Control Loop				
4	NC	NC	Do not connect with other NC pins	Keep Open			
5	VSH2	С	Positive Source driving voltage(Red)				
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin				
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin				
8	BS1	I	Bus Interface selection pin	Note 5-5			
9	BUSY	О	Busy state output pin	Note 5-4			
10	RES#	I	Reset signal input. Active Low.	Note 5-3			
11	D/C#	I	Data /Command control pin	Note 5-2			
12	CS#	I	Chip select input pin	Note 5-1			
13	SCL	I	Serial Clock pin (SPI)				
14	SDA	I/O	Serial Data pin (SPI)				
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI				
16	VCI	P	Power Supply for the chip				
17	VSS	P	Ground				
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS				
19	VPP	P	FOR TEST				
20	VSH1	С	Positive Source driving voltage				
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1				
22	VSL	C	Negative Source driving voltage				
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL				
24	VCOM	C	COM driving voltage				

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	e MCU Interface				
L	4-lines serial peripheral interface(SPI) - 8 bits SPI				
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI				

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	arameter Symbol Rating		Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

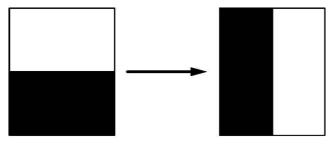
6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V_{ss}	_		-	0	-	V
Logic supply voltage	Vcı	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8 V _{CI}	-	-	V
Low level input voltage	V _{IL}	_	_	-	_	0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA	-	0.9 VCI	_	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	-	0.1 V _{CI}	V
Typical power	P _{TYP}	Va=3.0 V	-	-	10.5	_	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0 V	_	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	Va=3.0 V	-	-	3.5		mA
Full update time	-	25 °C	-	-	3	-	sec
Fast update time	-	25 °C	-	-	1.5	-	sec
Partial update time	-	25 °C	-	1-1	0.42	-	sec
Sleep mode current	Islp_Va	DC/ DC off No clock No input load Ram data retain	-		20		uA
Deep sleep mode current	Idslp_Va	DC/ DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:


Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process;

Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3.The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good display.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface		Control Signa	l
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	1

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte . The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

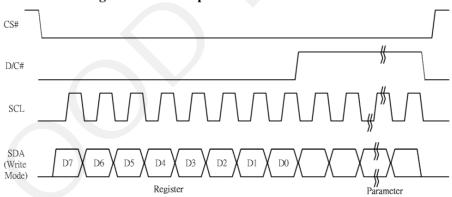


Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

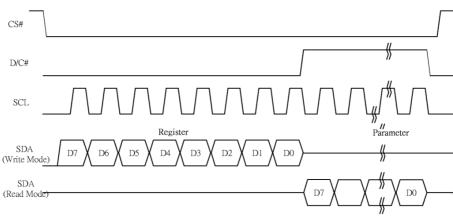
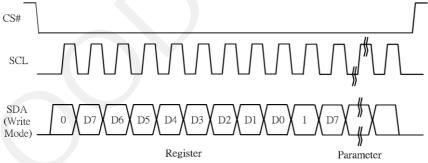


Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)


The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	↑
Write data	L	Tie	†

Note: † stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

CS#

SCL

SDA (Write

mode) SDA (Read Mode)

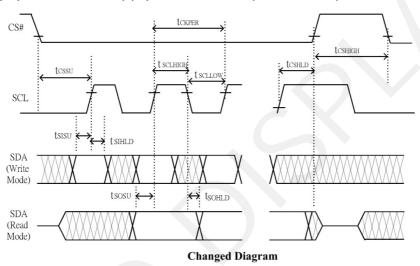

Register Parameter

Figure 6-4: Read procedure in 3-wire SPI mode

D3

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tcsнigh	Time CS# has to remain high between two transfers	100			ns
tsclHigh	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Read Mode)			2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100			ns
Time CS# has to remain low after the last falling edge of SCLK	50			ns
Time CS# has to remain high between two transfers	250			ns
Part of the clock period where SCL has to remain high	180			ns
Part of the clock period where SCL has to remain low	180			ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns
	Parameter SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK 100 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high 180 Part of the clock period where SCL has to remain low 180 Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL 50	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL 2.5 100 180 180 50

7. Command Table

Com	man	d Tal	ole												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ng		
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀], 296 MU	
0	1		0	0	0	0	0	0	0	A ₈		MUX Gate	e lines set	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	B ₂	B ₁	B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec SM=0 [PC G0, G1, G interlaced SM=1, G0, G2, G	on [POR] nning sequence is the 1st outport of part of	out Gate output char G0,G1, G output char G1, G0, G	nnel, gate 2, G3, nnel, gate 33, G2,
														from G0 G295 to G	
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate	drivina vo	Itage	
0	1		0	0	0	A ₄	Аз	A ₂	A ₁	Ao	Control	A[4:0] = 0	0h [POR]		
														0V to 20V	
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h 05h	10.5 11	0Fh 10h	16 16.5
															17
												06h 07h	11.5 12	11h 12h	17.5
												08h	12.5	13h	18
												07h	12.3	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5		

_	man	u i ai	JIE			_	_							
₩	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comm	nand		Description
)	0	04	0	0	0	0	0	1	0	0	Source	e Driving	voltage	Set Source driving voltage
)	1		A ₇	A ₆	A ₅	A4	Аз	A ₂	A ₁	A ₀	Contro	ol		A[7:0] = 41h [POR], VSH1 at 15V
)	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo				B[7:0] = A8h [POR], VSH2 at 5V.
	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co				C[7:0] = 32h [POR], VSL at -15V Remark: VSH1>=VSH2
	/B[7]	= 1	O ₁	00	03	04	03		7]/B[7					C[7] = 0,
SF			oltag	je se	tting	from	2.4V	VS				e setting	from 9V	VSL setting from -5V to -17V
	B[7:0]	VSH	1/VSH2	A/B	[7:0]	VSH1	/VSH2		√B[7:0]	vs	H1/VSH2	A/B[7:0]	VSH1/VSH	2 C[7:0] VSL
	BEh	_	2.4		Fh		.7		23h	\perp	9	3Ch	14	0Ah -5
	BFh 90h		2.5		0h 1h		.8 .9	\vdash	24h 25h	+	9.2 9.4	3Dh 3Eh	14.2	0Ch -5,5
	91h		2.7		2h		6		26h		9,6	3Fh	14,6	0Eh -6
_	92h		2.8		3h	6			27h		9.8	40h	14.8	10h -6.5 12h -7
	93h	1	2.9 3		4h		.2		28h	-	10	41h	15	12h -/ 14h -7.5
	94h 95h	1	3.1		5h 6h		.3	6 —	29h 2Ah	-	10.2	42h 43h	15.2 15.4	16h -8
	96h	-	3.2	_	7h	_	.5		2Bh		10.4	44h	15.6	18h -8.5
	9 7 h		3.3		8h	_	.6		2Ch		10,8	45h	15.8	1Ah -9
	98h 99h		3.4	_	9h Ah	6	.7	\vdash	2Dh 2Eh	-	11.2	46h 47h	16 16.2	1Ch -9.5
	99n 9Ah	-	3.6		Bh	_	.0		2Fh		11.4	47n 48h	16,4	1Eh -10
_	9Bh		3.7		Ch		7		30h		11.6	49h	16,6	20h -10.5
	9Ch	_	3.8		Dh		.1		31h	_	11.8	4Ah	16.8	22h -11 24h -11.5
	9Dh 9Eh		3.9 4		Eh Fh		.2	-	32h 33h		12.2	4Bh Other	17 NA	26h 12
_	9Fh		4,1	_	0h	_	.4		34h		12.4	Other	101	28h -12.5
	A0h		1.2		1h	_	.5		35h		12,6			2Ah -13
	A1h	-	4.3	_	2h 3h	7	.6	\vdash	36h 37h	_	12,8			2Ch -13.5
	A2h A3h		4.4 4.5	_	4h	_	.8	-	38h	+	13.2			2Eh -14
_	A4h	_	1.6	_	5h		.9		39h	_	13,4			30h -14.5
	A5h	_	1.7	_	6h	8			3Ah		13.6			32h -15 34h -15.5
_	A6h A7h	_	4.8 4.9		7h 8h		.1		3Bh		13.8			36h -16
	A8h	1	5	_	9h	_	.3							38h -16.5
	A9h		5.1		Ah		.4							3Ah -17
	AAh ABh		5.2	_	Bh Ch	_	.5 .6							Other NA
	ACh		5.4		Dh		.7							
	ADh	-	5.5	_	Eh	_	.8							
P	AEh	1	5.6	O	ther	N	IA							
)	0	08	0	0	0	0	1	0	0	0	Initial (Code Set	tina	Program Initial Code Setting
	J			5				7			OTP F	rogram	9	
												J		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during operation.
_														
_	0	09	0	0	0	0	1	0	0	1		Register f	or Initial	Write Register for Initial Code Setting
	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Code :	Setting		Selection
)	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Вı	Bo				A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of In
	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co				Code Setting
)	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀				
-			-,	20	23	24	23	22						

0 0A

Read Register for Initial Read Register for Initial Code Setting Code Setting

R/W#		d Tak		000000	2000000								
^		Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
U	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable v	with Phase 1, Phase 2 and Phase 3
0	1		1	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control	for soft start curre	ent and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	1		rt setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1	= 8Bh B[7:0] -> Soft sta	[POR] rt setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-	= 9Ch	[POR]
١	٠.		U		Do	D4	03	02	01			C[7:0] -> Soft sta = 96h	rt setting for Phase3
												D[7:0] -> Duratio	n setting
												= 0Fh	[POR]
												Bit Descript A[6:0] / B[6	tion of each byte: :0] / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	[Time unit]
												0011	NA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4]: du D[3:2]: du	ration setting of phase ration setting of phase 3 ration setting of phase 2 ration setting of phase 2 ration setting of phase 1 Duration of Phase [Approximation] 10ms 20ms 30ms
												11	40ms
									<u> </u>	1			2. 1000(17775)
0	0	10	0	0	0	1	0	_	_		eep Sleep mode	Deep Sleep m	
0	1		0	0	0	0	0	0	A ₁	A ₀			scription rmal Mode [POR]
													ter Deep Sleep Mode 1
												200000	Manuscrope Control • Store Control •
												11 Ent	ter Deep Sleep Mode 2
												enter Deep Sle keep output hi Remark: To Exit Deep S	Sleep mode, User required
													ESET to the driver

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	Ao	Data Entry mode setting	A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 -Y decrement, X decrement, 01 -Y decrement, X increment, 10 -Y increment, X decrement, 11 -Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	10	0	0	0	0	0	A ₂	A ₁	A ₀	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V
	١.		•	•	•	"		/ 1/2	/\i	/ 10		A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V 111 2.6V
												Other NA
												Suici TV
												The command required CLKEN=1 and
												ANALOGEN=1
												Refer to Register 0x22 for detail.
												After this command initiated, VCI
												detection starts.
												BUSY pad will output high during detection.
												The detection result can be read from the
												Status Bit Read (Command 0x2F).
				-	-					_		
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control	sensor
			3 N									A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor Control (Write to	Write to temperature register. A[11:0] = 7FFh [POR]
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	temperature register)	A[11:0] = 71111[FOR]
0	1		Аз	A ₂	A ₁	A ₀	0	0	0	0		
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	Tread from tomporatary registers
1	1		A ₃	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
	_	10	^	_	0	4	4	4	_	_	Tananamatuna Canaan	Write Commond to Futowed town and town
0	1	1C	0 A ₇	0 A ₆	0	1 A ₄	1	1 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control (Write Command	Write Command to External temperature sensor.
0	1				A ₅		A ₃			B ₀	to External temperature	A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁		sensor)	B[7:0] = 00h [POR],
0			C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		C[7:0] = 00h [POR],
												A[7:6]
												A[7:6] Select no of byte to be sent 00 Address + pointer
												01 Address + pointer + 1st parameter
												10 Address + pointer + 1st parameter + 2nd pointer
												11 Address
												A[5:0] – Pointer Setting
												B[7:0] – 1 st parameter C[7:0] – 2 nd parameter
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												After this command initiated, Write
												Command to external temperature sensor
												starts. BUSY pad will output high during
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
			•		•							
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel images.
												liniagos.

0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display	Update
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]	
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000	atent as 0 atent 0 to S175
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Optic Enable the stage for Master Ac A[7:0]= FFh (POR)	on: tivation
												Operating sequence	Parameter (in Hex)
												Enable clock signal Disable clock signal	80 01
												Enable clock signal	
												→ Enable Analog Disable Analog	C0
												→ Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	written into the BW RAM until a command is written. Address padvance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
	_	07	•	_	4	_		4	4		D I DAM	100 00
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	_	VCOM Sense	Enter VCOM sensing conditions and hold
	U	20	O	O	1	U		U	U	0	VCOW Serise	for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	1	29	0	1	0	0	1 A ₃	0 A ₂	0 A ₁	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
	_	24	0	0	4	_	_		4	_	December VCOM OTD	Drawner VCOM sa sister into OTD
0	0	2A	0	U	1	U	1	U	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	20	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.

Com	man	d Ta	hle												
R/W#		_		D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register			er from M	1CU interface
0	1	20	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Write VCOW register		00h [POR]		ico interiace
U			A7	A6	A5	H4	A3	A ₂	A ₁	A ₀		7 (7)			
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
											I .				
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Display Option		3.2.2.		
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			VCOM OT		on
	1			_	C ₅	C ₄	_	_	_	C ₀		(Comm	and 0x37,	Byte A)	
1	911		C ₇	C ₆	_	_	C ₃	C ₂	C ₁	_		D(7.0).	VOOM D-		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			VCOM Regiand 0x2C)		
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Εo		(Collin	ialiu uxzu)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~	G[7:0]: Dis	play Mod	de
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		(Comm	and 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Н₀		[5 bytes	s]		
1	1		17	l ₆	l ₅	14	l ₃	l ₂	I ₁	Io					
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀			K[7:0]: Wa		
_			_	_	_	_	_	_	_	_		[4 bytes	and 0x37,	Byte G to	Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 Dytes	9]		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Dood 10) Byte User	ID store	ad in OTD:
0		20			1			1			User ID Read				Byte A and
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		Byte J)	[10 bytes]	IID (IXOO,	byte A and
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		2,100,	[]		
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C_2	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D_4	D ₃	D_2	D ₁	Do					
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Εo					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇		H ₅			7	H ₁	H₀					
_				H ₆		H ₄	H ₃	H ₂							
1	1		l ₇	16	l ₅	14	l ₃	l ₂	l ₁	I ₀					
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J_2	J ₁	J ₀					
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC	status Bit [POR 0x0	01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀				tection fla	ag [POR=0]
												0: Ready			
												1: Not Re	eady I Detection	flog IDO	D=01
												0: Norma		liag [PO	K-UJ
													wer than th	ne Detect	level
												A[3]: [PC	R=0]		
												A[2]: Bus	sy flag [POI	R=0]	
												0: Norma			
												1: BUSY		D-041	
												A[1:0]: C	hip ID [PO	K-01]	
												Remark:			
												A[5] and	A[4] status		
													they need		
												100	d 0x14 and	d comma	nd 0x15
												respectiv	ely.		

	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM
												before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
				100			,					
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during
												operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		[153 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		FR[n] and XON[nXY]
0	1											Refer to Session 6.7 WAVEFORM SETTING
			\(\frac{1}{2}\)	10.001	i i			6				
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	As		A[15:0] is the CRC read out value
				_	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		
1	1		A ₇	A ₆	7.0							
0	0	36	O	A ₆	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
		36				1	0	1	1	0	Program OTP selection	OTP Selection Control [R37h and R38h] The command required CLKEN=1.
		36				1	0	1	1	0	Program OTP selection	OTP Selection Control [R37h and R38h]
		36				1	0	1	1	0	Program OTP selection	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail.
		36				1	0	1	1	1	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option
0 0	0 1		0 A ₇	0 0 0	1 0	1 0	0 0	1 0	1 0	1 0		OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 0 0	0 1 1		0 A ₇ B ₇	0 0 0 B ₆	1 0 B ₅	1 0 B ₄	0 0 B ₃	1 0 B ₂	1 0 B ₁	1 0 B ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection
0 0	0 1		0 A ₇	0 0 0	1 0	1 0	0 0	1 0	1 0	1 0	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0]
0 0 0 0	0 1 1 1		0 A ₇ B ₇ C ₇	0 0 0 B ₆ C ₆	1 0 B ₅ C ₅	1 0 B ₄ C ₄	0 0 B ₃ C ₃	1 0 B ₂ C ₂	1 0 B ₁ C ₁	1 0 B ₀ C ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]
0 0 0 0 0	0 1 1 1 1 1		0 A ₇ B ₇ C ₇ D ₇ E ₇	0 0 0 B ₆ C ₆ D ₆ E ₆	1 0 B ₅ C ₅ D ₅ E ₅	1 0 B ₄ C ₄ D ₄ E ₄	0 0 0 B ₃ C ₃ D ₃ E ₃ F ₃	1 0 B ₂ C ₂ D ₂ E ₂ F ₂	1 0 B ₁ C ₁ D ₁ E ₁ F ₁	1 0 B ₀ C ₀ D ₀ E ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[31:24]
0 0 0 0 0 0	0 1 1 1 1 1 1		0 A ₇ B ₇ C ₇ D ₇ E ₇ 0 G ₇	0 0 0 B ₆ C ₆ D ₆ E ₆ F ₆	1 0 B ₅ C ₅ D ₅ E ₅ 0 G ₅	1 0 B ₄ C ₄ D ₄ E ₄ 0 G ₄	0 0 B ₃ C ₃ D ₃ E ₃ F ₃ G ₃	1 0 B ₂ C ₂ D ₂ E ₂ F ₂ G ₂	1 0 B ₁ C ₁ D ₁ E ₁ F ₁	1 0 B ₀ C ₀ D ₀ E ₀ F ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24] F[3:0 Display Mode for WS[35:32]
0 0 0 0 0 0	0 1 1 1 1 1 1 1		0 A ₇ B ₇ C ₇ D ₇ E ₇ 0 G ₇ H ₇	0 0 0 0 B ₆ C ₆ D ₆ E ₆ F ₆ G ₆	1 0 B ₅ C ₅ D ₅ E ₅ 0 G ₅ H ₅	1 0 B ₄ C ₄ D ₄ E ₄ 0 G ₄ H ₄	0 0 0 B ₃ C ₃ D ₃ E ₃ F ₃ G ₃ H ₃	1 0 B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂	1 0 B ₁ C ₁ D ₁ E ₁ F ₁ G ₁	1 0 B ₀ C ₀ D ₀ E ₀ F ₀ G ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[31:24]
0 0 0 0 0 0	0 1 1 1 1 1 1		0 A ₇ B ₇ C ₇ D ₇ E ₇ 0 G ₇	0 0 0 B ₆ C ₆ D ₆ E ₆ F ₆	1 0 B ₅ C ₅ D ₅ E ₅ 0 G ₅	1 0 B ₄ C ₄ D ₄ E ₄ 0 G ₄	0 0 B ₃ C ₃ D ₃ E ₃ F ₃ G ₃	1 0 B ₂ C ₂ D ₂ E ₂ F ₂ G ₂	1 0 B ₁ C ₁ D ₁ E ₁ F ₁	1 0 B ₀ C ₀ D ₀ E ₀ F ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24] F[3:0 Display Mode for WS[35:32] 0: Display Mode 1
0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 A ₇ B ₇ C ₇ D ₇ E ₇ 0 G ₇ H ₇	0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6	1 0 B ₅ C ₅ D ₅ E ₅ 0 G ₅ H ₅	1 0 B ₄ C ₄ D ₄ E ₄ 0 G ₄ H ₄	0 0 0 B ₃ C ₃ D ₃ E ₃ F ₃ G ₃ H ₃	1 0 B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂	1 0 B ₁ C ₁ D ₁ E ₁ F ₁ G ₁ H ₁	1 0 B ₀ C ₀ D ₀ E ₀ F ₀ G ₀ H ₀	Write Register for Display	OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Display Option A[7] Spare VCOM OTP selection 0: Default [POR] 1: Spare B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[31:24] F[3:0 Display Mode for WS[31:24] F[3:0 Display Mode for WS[35:32] 0: Display Mode 1 1: Display Mode 2 F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR]

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~J[7:0] can be stored in		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀				
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go				
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho				
0	1		17	l 6	15	14	lз	12	l ₁	lo				
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo				
	_	20				_	4		_		OTD	OTD		
0	1	39	0	0	0	0	0	0	0 A ₁	1 A ₀	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage		
												Remark: User is required to EXACTLY follow the reference code sequences		
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select border waveform for VBD		
0	1		A ₇	A6	A ₅	A4	0	A ₂	A ₁	Ao		A[7:0] = C0h [POR], set VBD as HIZ. A [7:6] :Select VBD option A[7:6] Select VBD as 00 GS Transition, Defined in A[2] and A[1:0] 01 Fix Level, Defined in A[5:4] 10 VCOM 11[POR] HiZ A [5:4] Fix Level Setting for VBD A[5:4] VBD level 00 VSS 01 VSH1 10 VSH2 A[2] GS Transition control A[2] GS Transition control 0 Follow LUT (Output VCOM @ RED) 1 Follow LUT A [1:0] GS Transition setting for VBD A[1:0] VBD Transition 00 LUT0 01 LUT1 10 LUT2 11 LUT3		
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end A[7:0]= 02h [POR]		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		22h Normal.		
												07h Source output level keep		
										o .		previous output before power off		
	_				_	_	_	_	_		D 104110 "	D IDMO ii		
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option A[0]= 0 [POR]		
0	1		0	0	0	0	0	0	0	A ₀		0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26		
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the		
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window address in the X direction by an		
0	1		0	0	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	1	address unit for RAM		
												A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h		

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the	e start/en	d nositions	s of the
0	1	43	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position				ction by an
0	1		0	0	0	0	0	0	0	A ₈	1	address ur	nit for RA	M	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[8:0]: YS	A[8:01. YS	Start, POR	e = 000h
0	1		0	0	0	0	0	0	0	Ba	1	B[8:0]: YE			
0	0	46	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	0 A o	Auto Write RED RAM for Regular Pattern	Auto Write A[7:0] = 00		M for Reg	ular Patter
			, A	٨٥	Α3	A4	O	72	A	~		A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accord to Gate			
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alto to Source A[2:0] 000 001			Width 128 176
												010	32 64	110 111	NA NA
												BUSY pad operation.	will outpu		
0	1	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern	Auto Write B/W RAM for R A[7:0] = 00h [POR] A[7]: The 1st step value, P A[6:4]: Step Height, POR= Step of alter RAM in Y-dire to Gate		alue, POR POR= 00 Y-direction	t = 0 0 on accordir
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of alto to Source A[2:0] 000 001 010 011 During openigh.	Width 8 16 32 64	A[2:0] 100 101 110 111	Width 128 176 NA NA
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initia			
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in A[5:0]: 00h	the addr		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initia			
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	counter	address in	the addr	ess counte	
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000	Oh [POR].		
		75		4	1	1	1	1	1	1	NOP	This comm	and is ar		
0	0	7F	0	1		100						This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.			

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	1	sec	
Life		Topr		1000000times or 5years			

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance withall black pixels.
- 8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with

care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as aalkaligases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

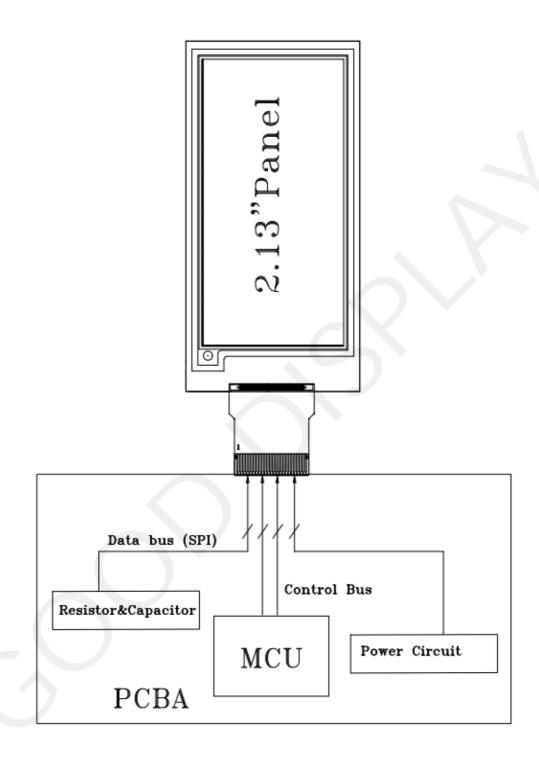
	Data sheet status						
Product specification	This data sheet contains final product specifications.						
Limiting values							

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC

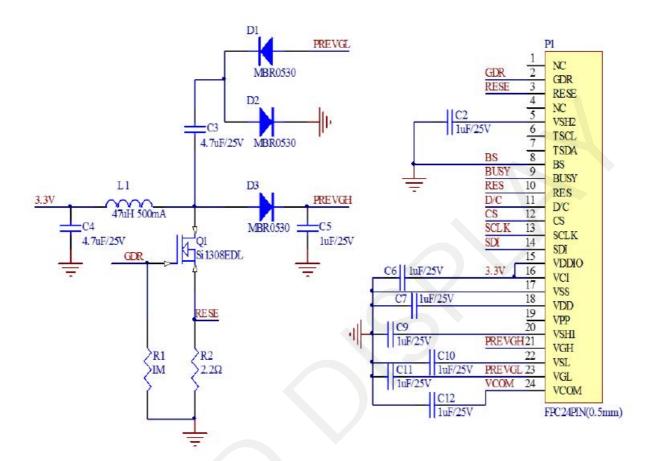
134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.


10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0° C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)


Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Reference Circuit

13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link: https://www.good-display.com/product/53/

14. Typical Operating Sequence

14.1 Normal Operation Flow

- Supply VCI
- Wait 10ms

2. Set Initial Configuration

- Define SPI interface to communicate with MCU
- HW Reset
- SW Reset by Command 0x12
- Wait 10ms

3. Send Initialization Code

- Set gate driver output by Command 0x01
- Set display RAM size by Command 0x11, 0x44, 0x45
- Set panel border by Command 0x3C

4. Load Waveform LUT

- Sense temperature by int/ext TS by Command 0x18
- Load waveform LUT from OTP by Command 0x22, 0x20 or by MCU
- Wait BUSY Low

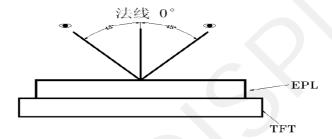
5. Write Image and Drive Display Panel

- Write image data in RAM by Command 0x4E, 0x4F, 0x24, 0x26
- Set softstart setting by Command 0x0C
- Drive display panel by Command 0x22, 0x20
- · Wait BUSY Low

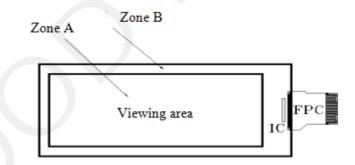
6. Power Off

- Deep sleep by Command 0x10
- Power OFF

15. Inspection condition


15. 1 Environment

Temperature: 25±3℃ Humidity: 55±10%RH


15. 2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 30°surround.

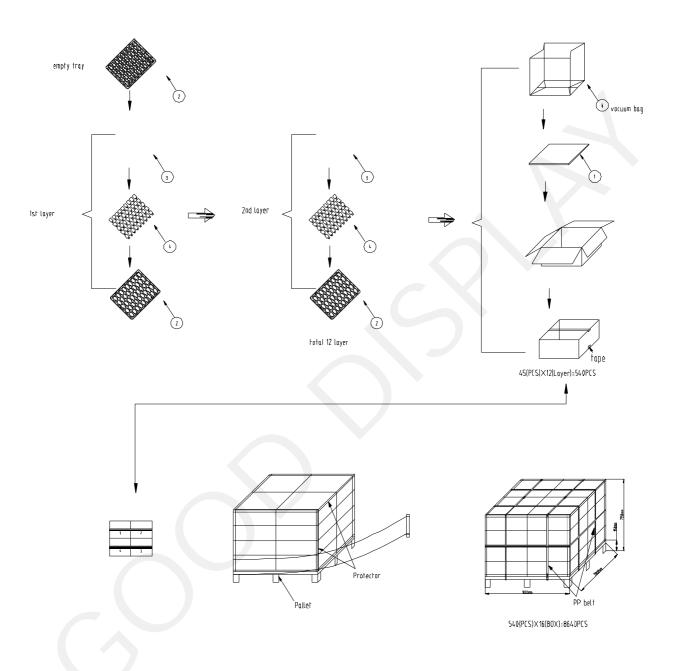
15.3 Inspection method

15. 4 Display area

15. 5 Inspection standard

15. 5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm ∘ N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L\leq0.6mm, W\leq0.2mm, N\leq1 L\leq2.0mm,W\rangle0.2mm, Not Allow L\rangle0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			


15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $<$ D ≤ 0.4 mm, N ≤ 3 D >0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mmAnd without affecting the electrode is permissible 2 mm $\le X$ or 2 mm $\le Y$ Not Allow $W \le 0.1$ mm, $L \le 5$ mm, No harm to the electrodes and $N \le 2$ allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm。 n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC ≤ 1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.good-display.com/news/80.html