

# 1.54 inch E-paper Display Series

GDEY0154Z90

Dalian Good Display Co., Ltd.





# **Product Specifications**





| Customer    | Standard              |
|-------------|-----------------------|
| Description | 1.54" E-PAPER DISPLAY |
| Model Name  | GDEY154Z90            |
| Date        | 2023/12/05            |
| Revision    | 1.1                   |

| D        | esign Engineerin | ıg     |
|----------|------------------|--------|
| Approval | Check            | Design |
| 宝刘印玉     | 燕修印凤             | 之吴印良   |

Zhongnan Building, No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com Website: www.good-display.com



### **REVISION HISTORY**

| Rev | Date        | Item         | Page | Remark           |
|-----|-------------|--------------|------|------------------|
| 1.0 | JUN.06.2022 | New Creation | ALL  |                  |
| 1.1 | DEC.15.2023 | Note 5-4     | 8    | From Low to High |
|     |             |              |      |                  |



## **CONTENTS**

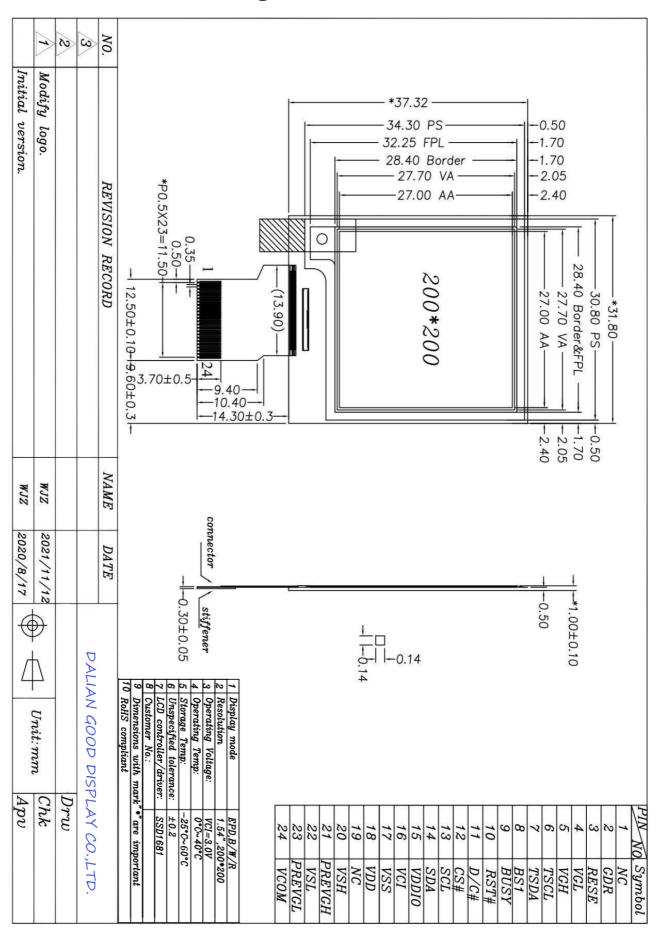
| 1.  | Overview                                        | 5          |
|-----|-------------------------------------------------|------------|
| 2.  | Features                                        | 5          |
| 3.  | Mechanical Specification                        | 5          |
| 4.  | Mechanical Drawing of EPD Module                | . 6        |
| 5.  | Input/output Pin Assignment                     | 7          |
| 6.  | Command Table                                   | 9          |
| 7.  | Electrical Characteristics                      | 21         |
|     | 7.1 Absolute maximum rating                     | 21         |
|     | 7.2 Panel DC Characteristics                    | 21         |
|     | 7.3 Panel AC Characteristics                    | 22         |
|     | 7.3.1. MCU Interface selection                  | 22         |
|     | 7.3.2 Serial Peripheral Interface               | 25         |
|     | 7.3.3 Reference Circuit                         | 26         |
| 8.  | Optical Specifications                          | 27         |
| 9.  | Block Diagram                                   | 28         |
| 10. | Reference Circuit                               | 29         |
| 11. | Matched Development Kit                         | 30         |
| 12. | Reliability test                                | 31         |
| 13. | Point and line standard                         | 33         |
| 14. | Handling, Safety and Environmental Requirements | 34         |
| 15. | Packing                                         | <b>3</b> 5 |
|     | Precautions                                     |            |



#### 1. Overview

GDEY0154Z90 is a TFT active matrix electrophoretic display, with interface and a reference system design. The 1.54 " active area contains 200×200 pixels, and has 1-bit black/white and highlight red full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

#### 2. Features


- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Sourcedriving voltage
- I2C signal master interface to read external temperature sensor
- Available in COG package IC thickness 300um

### 3. Mechanical Specifications

| Parameter           | Specifications   | Unit  | Remark  |
|---------------------|------------------|-------|---------|
| Screen Size         | 1.54             | Inch  |         |
| Display Resolution  | 200(H)×200(V)    | Pixel | Dpi:184 |
| Active Area         | 27.0×27.0        | mm    |         |
| Pixel Pitch         | 0.14×0.14        | mm    |         |
| Pixel Configuration | Square           |       |         |
| Outline Dimension   | 31.8×37.32×0.98  | mm    |         |
| Weight              | 2.18 <b>±0.5</b> | g     |         |



### 4. Mechanical Drawing of EPD module





# 5. Input /Output Pin Assignment

# **5.1 P**in out List

| No. | Name  | I/O | Description                                                                                                        | Remark    |
|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1   | NC    |     | Do not connect with other NC pins                                                                                  | Keep Open |
| 2   | GDR   | О   | N-Channel MOSFET Gate Drive Control                                                                                |           |
| 3   | RESE  | I   | Current Sense Input for the Control Loop                                                                           |           |
| 4   | NC    | NC  | Do not connect with other NC pins                                                                                  | Keep Open |
| 5   | VSH2  | С   | Positive Source driving voltage(Red)                                                                               |           |
| 6   | TSCL  | О   | I <sup>2</sup> C Interface to digital temperature sensor Clock pin                                                 |           |
| 7   | TSDA  | I/O | I <sup>2</sup> C Interface to digital temperature sensor Data pin                                                  |           |
| 8   | BS1   | I   | Bus Interface selection pin                                                                                        | Note 5-5  |
| 9   | BUSY  | О   | Busy state output pin                                                                                              | Note 5-4  |
| 10  | RES#  | I   | Reset signal input. Active Low.                                                                                    | Note 5-3  |
| 11  | D/C#  | Ι   | Data /Command control pin                                                                                          | Note 5-2  |
| 12  | CS#   | Ι   | Chip select input pin                                                                                              | Note 5-1  |
| 13  | SCL   | Ι   | Serial Clock pin (SPI)                                                                                             |           |
| 14  | SDA   | I   | Serial Data pin (SPI)                                                                                              |           |
| 15  | VDDIO | P   | Power Supply for interface logic pins It should be connected with VCI                                              |           |
| 16  | VCI   | P   | Power Supply for the chip                                                                                          |           |
| 17  | VSS   | P   | Ground                                                                                                             |           |
| 18  | VDD   | С   | Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS |           |
| 19  | VPP   | P   | FOR TEST                                                                                                           |           |
| 20  | VSH1  | С   | Positive Source driving voltage                                                                                    |           |
| 21  | VGH   | С   | Power Supply pin for Positive Gate driving voltage and VSH1                                                        |           |
| 22  | VSL   | C   | Negative Source driving voltage                                                                                    |           |
| 23  | VGL   | С   | Power Supply pin for Negative Gate driving voltage VCOM and VSL                                                    |           |
| 24  | VCOM  | C   | VCOM driving voltage                                                                                               |           |



Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is High, the operation of

chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- -Outputting display waveform
- -Communicating with digital temperature sensor.

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low ", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

| BS1 State | MCU Interface                                          |
|-----------|--------------------------------------------------------|
| L         | 4-lines serial peripheral interface(SPI) - 8 bits SPI  |
| Н         | 3- lines serial peripheral interface(SPI) - 9 bits SPI |



# **6. Command Table**

| Com  | man  | d Tal | ole            |                |                |                |                |                |                |                |                                 |                                                                                                                                                                                                       |                                                                                                              |             |                                                             |                                       |
|------|------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------|---------------------------------------|
| R/W# | D/C# | Hex   | D7             | D6             | D5             | D4             | D3             | D2             | D1             | D0             | Command                         | Descripti                                                                                                                                                                                             | ion                                                                                                          |             |                                                             |                                       |
| 0    | 0    | 01    | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1              | Driver Output control           | Gate setti                                                                                                                                                                                            | ing                                                                                                          |             |                                                             |                                       |
| 0    | 1    |       | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |                                 | A[8:0]= C                                                                                                                                                                                             | 7h [POR]                                                                                                     | , 200 MUX   |                                                             |                                       |
| 0    | 1    |       | 0              | 0              | 0              | 0              | 0              | 0              | 0              | A <sub>8</sub> |                                 | MUX Gat                                                                                                                                                                                               | e lines se                                                                                                   | tting as (A | [8:0] + 1).                                                 |                                       |
| 0    | 1    |       | 0              | 0              | 0              | 0              | 0              | B <sub>2</sub> | B <sub>1</sub> | Bo             |                                 | B[2:0] = 0                                                                                                                                                                                            | ום חם                                                                                                        | ı           |                                                             |                                       |
| •    | '    |       |                | •              |                | •              |                | -              | -              | "              |                                 |                                                                                                                                                                                                       |                                                                                                              | uence and   | direction                                                   |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | B[2]: GD Selects the GD=0 [PC G0 is the output se GD=1, G1 is the output se B[1]: SM Change s SM=0 [PC G0, G1, Ginterlaced SM=1, G0, G2, CB [0]: TB TB = 0 [PC SM | ne 1st outp<br>DR],<br>1st gate of<br>quence is<br>1st gate of<br>quence is<br>canning of<br>DR],<br>62, G31 |             | nnel, gate 2, G3, nnel, gate 33, G2, te driver. nd right ga | e e e e e e e e e e e e e e e e e e e |
|      |      |       |                |                |                |                |                |                |                |                |                                 |                                                                                                                                                                                                       |                                                                                                              |             |                                                             |                                       |
| 0    | 0    | 03    | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 1              | Gate Driving voltage<br>Control | Set Gate<br>A[4:0] = 0                                                                                                                                                                                |                                                                                                              |             |                                                             |                                       |
| 0    | 1    |       | 0              | 0              | 0              | A <sub>4</sub> | Аз             | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | Control                         |                                                                                                                                                                                                       |                                                                                                              | 0V to 20V   | ,                                                           |                                       |
| ļ.   |      |       |                |                |                |                |                |                |                |                |                                 | A[4:0]                                                                                                                                                                                                | VGH                                                                                                          | A[4:0]      | VGH                                                         |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 00h                                                                                                                                                                                                   | 20                                                                                                           | 0Dh         | 15                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 03h                                                                                                                                                                                                   | 10                                                                                                           | 0Eh         | 15.5                                                        |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 04h                                                                                                                                                                                                   | 10.5                                                                                                         | 0Fh         | 16                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 05h                                                                                                                                                                                                   | 11                                                                                                           | 10h         | 16.5                                                        |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 06h                                                                                                                                                                                                   | 11.5                                                                                                         | 11h         | 17                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 07h                                                                                                                                                                                                   | 12                                                                                                           | 12h         | 17.5                                                        |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 08h                                                                                                                                                                                                   | 12.5                                                                                                         | 13h         | 18                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 07h                                                                                                                                                                                                   | 12                                                                                                           | 14h         | 18.5                                                        |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 08h                                                                                                                                                                                                   | 12.5                                                                                                         | 15h         | 19                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 09h                                                                                                                                                                                                   | 13                                                                                                           | 16h         | 19.5                                                        |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 0Ah                                                                                                                                                                                                   | 13.5                                                                                                         | 17h         | 20                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 0Bh                                                                                                                                                                                                   | 14                                                                                                           | Other       | NA                                                          |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 | 0Ch                                                                                                                                                                                                   | 14.5                                                                                                         |             |                                                             |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 |                                                                                                                                                                                                       |                                                                                                              |             |                                                             |                                       |
|      |      |       |                |                |                |                |                |                |                |                |                                 |                                                                                                                                                                                                       |                                                                                                              |             |                                                             |                                       |



| DALL             |               | d Tal         |                | DC             | D.             | В.             | D.                    | DO                | D4              | - DO           | 0             |                     |              | Di-ti                                                 |
|------------------|---------------|---------------|----------------|----------------|----------------|----------------|-----------------------|-------------------|-----------------|----------------|---------------|---------------------|--------------|-------------------------------------------------------|
|                  | D/C#          |               | D7             | D6             | D5             | D4             | D3                    | D2                | D1              | D0             | Comn          | 720000 200 1170     | 0.00         | Description                                           |
| 0                | 0             | 04            | 0              | 0              | 0              | 0              | 0                     | 1                 | 0               | 0              |               | e Driving           | voltage      | Set Source driving voltage                            |
| 0                | 1             |               | A <sub>7</sub> | $A_6$          | A <sub>5</sub> | A4             | <b>A</b> <sub>3</sub> | A <sub>2</sub>    | A <sub>1</sub>  | A <sub>0</sub> | Contro        | ol .                |              | A[7:0] = 41h [POR], VSH1 at 15V                       |
| 0                | 1             |               | B <sub>7</sub> | B <sub>6</sub> | B <sub>5</sub> | B <sub>4</sub> | Вз                    | B <sub>2</sub>    | B <sub>1</sub>  | Bo             | 1             |                     |              | B[7:0] = A8h [POR], VSH2 at 5V.                       |
| 0                | 1             |               | C <sub>7</sub> | C <sub>6</sub> | C <sub>5</sub> | C <sub>4</sub> | C <sub>3</sub>        | C <sub>2</sub>    | C <sub>1</sub>  | Co             | 1             |                     |              | C[7:0] = 32h [POR], VSL at -15V<br>Remark: VSH1>=VSH2 |
|                  |               | - 1           | 0/             | 06             | 05             | 04             | 03                    |                   |                 |                |               |                     |              |                                                       |
| VSF              |               | = 1,<br>SH2 \ | oltag          | e se           | tting          | from           | 2.4V                  | VS                |                 |                |               | e setting           | from 9V      | C[7] = 0,<br>VSL setting from -5V to -17V             |
| 8 0              | .OV<br>B[7:0] | I V/SH        | 1/VSH2         | Δ/Β            | [7:0]          | VeH1           | /VSH2                 | _                 | 17V<br>A/B[7:0] | 1 1/9          | H1/VSH2       | A/B[7:0]            | VSH1/VSH     | 2 C[7:0] VSL                                          |
|                  | BEh           | _             | 2.4            | _              | Fh             | _              | 7.7                   | ĭ                 | 23h             | J V3           | 9             | 3Ch                 | 14           | 2 C[7:0] VSL OAh -5                                   |
|                  | 8Fh           |               | 2.5            | В              | 0h             | 5              | .8                    |                   | 24h             |                | 9.2           | 3Dh                 | 14.2         | 0Ch -5.5                                              |
|                  | 90h           | _             | 2.6            | _              | 1h             | _              | .9                    | ( L               | 25h             |                | 9.4           | 3Eh                 | 14.4         | 0Eh -6                                                |
|                  | 91h<br>92h    | +             | 2.7            | _              | 2h<br>3h       | _              | 6                     | (                 | 26h<br>27h      | -              | 9.6           | 3Fh<br>40h          | 14.6<br>14.8 | 10h -6.5                                              |
|                  | 92n<br>93h    | _             | 2.8            | _              | 4h             | _              | 5.2                   | *   <del> -</del> | 27h             |                | 10            | 40h<br>41h          | 15           | 12h -7                                                |
|                  | 94h           |               | 3              | -              | 5h             | _              | .3                    |                   | 29h             |                | 10.2          | 42h                 | 15.2         | 14h -7.5                                              |
|                  | 95h           | +             | 3.1            | -              | 6h             | _              | .4                    |                   | 2Ah             |                | 10.4          | 43h                 | 15.4         | 16h -8                                                |
|                  | 96h           | +             | 3.2            | _              | 7h             | _              | .5                    |                   | 2Bh             |                | 10.6          | 44h                 | 15.6         | 18h -8.5                                              |
|                  | 97h           |               | 3.3            | _              | 8h<br>9h       | _              | .6                    |                   | 2Ch<br>2Dh      | -              | 10.8          | 45h                 | 15.8<br>16   | 1Ah -9                                                |
|                  | 98h<br>99h    | _             | 3.4            | _              | 9h<br>Ah       | _              | .8                    |                   | 2Dh<br>2Eh      |                | 11.2          | 46h<br>47h          | 16.2         | 1Ch -9.5                                              |
|                  | 9Ah           |               | 3.6            | -              | Bh             | _              | .9                    |                   | 2Fh             | +              | 11.4          | 48h                 | 16.4         | 1Eh -10                                               |
|                  | 9Bh           |               | 3.7            | В              | Ch             |                | 7                     |                   | 30h             |                | 11.6          | 49h                 | 16.6         | 20h -10.5<br>22h -11                                  |
|                  | 9Ch           | _             | 3.8            | _              | Dh             | _              | .1                    |                   | 31h             |                | 11.8          | 4Ah                 | 16.8         | 22h -11<br>24h -11.5                                  |
|                  | 9Dh<br>9Eh    |               | 3.9            | _              | Eh<br>Fh       | _              | .2                    |                   | 32h             | -              | 12.2          | 4Bh                 | 17<br>NA     | 26h -12                                               |
| _                | 9Fh           |               | 4.1            | _              | Oh             | _              | .4                    | 0                 | 33h<br>34h      | -              | 12.4          | Other               | NA           | 28h -12.5                                             |
|                  | A0h           | _             | 4.2            | _              | 1h             | _              | .5                    |                   | 35h             |                | 12.6          |                     |              | 2Ah -13                                               |
| 74               | A1h           |               | 4.3            | C              | 2h             | 7              | .6                    |                   | 36h             |                | 12.8          |                     |              | 2Ch -13.5                                             |
|                  | A2h           | _             | 4.4            | _              | 3h             | _              | .7                    |                   | 37h             |                | 13            |                     |              | 2Eh -14                                               |
|                  | A3h<br>A4h    | _             | 4.5<br>4.6     | +              | 4h<br>5h       | _              | .8<br>.9              |                   | 38h<br>39h      | _              | 13.2          |                     |              | 30h -14.5                                             |
|                  | A5h           | _             | 4.6            | _              | 6h             | _              | 8                     | -                 | 3Ah             | +              | 13.4          |                     |              | 32h -15                                               |
|                  | A6h           | _             | 4.8            | _              | 7h             |                | .1                    |                   | 3Bh             |                | 13.8          |                     |              | 34h -15.5                                             |
| 18               | A7h           |               | 4.9            | -              | 8h             | _              | .2                    | : :3 <b>:</b>     |                 | 20             | 33.           |                     |              | 36h -16                                               |
|                  | A8h           | 1             | 5              | _              | 9h             |                | 1.3                   |                   |                 |                |               |                     |              | 38h -16.5                                             |
|                  | A9h<br>AAh    | +             | 5.1<br>5.2     | -              | Ah<br>Bh       | _              | 3.5                   |                   |                 |                |               |                     |              | 3Ah -17                                               |
|                  | ABh           | _             | 5.3            | _              | Ch             |                | .6                    |                   |                 |                |               |                     |              | Other NA                                              |
| ı                | ACh           |               | 5.4            | C              | Dh             | 8              | .7                    |                   |                 |                |               |                     |              |                                                       |
| _                | ADh           | +             | 5.5            | _              | Eh             | _              | .8                    |                   |                 |                |               |                     |              |                                                       |
| -                | AEh           |               | 5.6            | Ot             | ther           | N              | IA                    |                   |                 |                |               |                     |              |                                                       |
| 0                | 0             | 08            | 0              | 0              | 0              | 0              | 1                     | 0                 | 0               | 0              | Initial (     | Code Set            | tina         | Program Initial Code Setting                          |
| Î                |               |               |                | 2250           |                |                |                       |                   |                 | •              |               | rogram              | .5           |                                                       |
|                  |               |               |                |                |                |                |                       |                   |                 |                | N-TO-SAME I M | J                   |              | The command required CLKEN=1.                         |
|                  |               |               |                |                |                |                |                       |                   |                 |                |               |                     |              | Refer to Register 0x22 for detail.                    |
|                  |               |               |                |                |                |                |                       |                   |                 |                |               |                     |              | BUSY pad will output high during                      |
|                  |               |               |                |                |                |                |                       |                   |                 |                |               |                     |              | operation.                                            |
|                  |               |               |                |                |                |                |                       |                   |                 |                |               |                     |              |                                                       |
|                  | 0             | 09            | 0              | 0              | 0              | 0              | 1                     | 0                 | 0               | 1              |               | Register t          | for Initial  | Write Register for Initial Code Setting               |
| 0                |               |               | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub>        | A <sub>2</sub>    | A <sub>1</sub>  | Ao             | Code          | Setting             |              | Selection                                             |
| _                | 1             |               | 20200          | B <sub>6</sub> | B <sub>5</sub> | B <sub>4</sub> | Вз                    | B <sub>2</sub>    | B <sub>1</sub>  | Bo             | 1             |                     |              | A[7:0] ~ D[7:0]: Reserved                             |
| 0                |               |               | R-             |                | <b>D</b> 5     |                | -                     |                   | 1000000         | 22.00          | -             |                     |              | Details refer to Application Notes of Initi           |
| 0                | 1             |               | B <sub>7</sub> |                | _              |                | C <sub>3</sub>        | $C_2$             | C <sub>1</sub>  | Co             | 1             |                     |              | Code Setting                                          |
| 0                | 1             |               | C <sub>7</sub> | C <sub>6</sub> | C <sub>5</sub> | C <sub>4</sub> | _                     | 124               |                 | 1              |               |                     |              |                                                       |
| 0<br>0<br>0<br>0 | 1             |               | -              |                | C <sub>5</sub> | D <sub>4</sub> | D <sub>3</sub>        | D <sub>2</sub>    | D <sub>1</sub>  | D <sub>0</sub> |               |                     |              |                                                       |
| 0<br>0<br>0      | 1             | 0A            | C <sub>7</sub> | C <sub>6</sub> |                |                | _                     | D <sub>2</sub>    | D <sub>1</sub>  | D <sub>0</sub> |               | Register<br>Setting | for Initial  | Read Register for Initial Code Setting                |



|        |      | d Tal | Maria and |                |                | 1              | T                     | 1              | 1 - 2 - 3 - 3  | The same of    | Part of the same   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------|-------|-----------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100000 | D/C# |       | D7        | D6             | D5             | D4             | D3                    | D2             | D1             | D0             | Command            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | 0    | 0C    | 0         | 0              | 0              | 0              | 1                     | 1              | 0              | 0              | Booster Soft start | Booster Enable with Phase 1, Phase 2 and Phase for soft start current and duration setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | 1    |       | 1         | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | Control            | THE RESERVE OF THE AREA CONTROL OF THE CONTROL OF T |
| 0      | 1    |       | 1         | B <sub>6</sub> | B <sub>5</sub> | B <sub>4</sub> | <b>B</b> <sub>3</sub> | B <sub>2</sub> | B <sub>1</sub> | Bo             |                    | A[7:0] -> Soft start setting for Phase1<br>= 8Bh [POR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0      | 1    |       | 1         | C <sub>6</sub> | C <sub>5</sub> | C <sub>4</sub> | C <sub>3</sub>        | C <sub>2</sub> | C <sub>1</sub> | Co             | 1                  | B[7:0] -> Soft start setting for Phase2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0      | 1    |       | 0         | 0              | D <sub>5</sub> | D <sub>4</sub> | D <sub>3</sub>        | D <sub>2</sub> | D <sub>1</sub> | Do             | -                  | = 9Ch [POR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |      |       |           |                |                |                |                       |                |                |                |                    | C[7:0] -> Soft start setting for Phase3<br>= 96h [POR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |      |       |           |                |                |                |                       |                |                |                |                    | D[7:0] -> Duration setting<br>= 0Fh [POR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |      |       |           |                |                |                |                       |                |                |                |                    | - OFIT [POR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |      |       |           |                |                |                |                       |                |                |                |                    | Bit Description of each byte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |      |       |           |                |                |                |                       |                |                |                |                    | A[6:0] / B[6:0] / C[6:0]:  Driving Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |      |       |           |                |                |                |                       |                |                |                |                    | Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 000 1(Weakest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 001 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 010 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 011 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 100 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 101 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 110 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 111 8(Strongest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |      |       |           |                |                |                |                       |                |                |                |                    | Min Off Time Setting of GDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |      |       |           |                |                |                |                       |                |                |                |                    | Bit[3:0] [Time unit]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 0000<br>~ NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 0100 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 0101 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 0110 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 0111 4.6<br>1000 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1001 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1010 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1010 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1100 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1101 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1110 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 1111 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |      |       |           |                |                |                |                       |                |                |                |                    | D[5:0]: duration setting of phase<br>D[5:4]: duration setting of phase 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | D[3:2]: duration setting of phase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |      |       |           |                |                |                |                       |                |                |                |                    | D[1:0]: duration setting of phase 1  Duration of Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |      |       |           |                |                |                |                       |                |                |                |                    | Bit[1:0] [Approximation]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 00 10ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 01 20ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 10 30ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 11 40ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0      | 0    | 10    | 0         | 0              | 0              | 1              | 0                     | 0              | 0              | 0 [            | Deep Sleep mode    | Deep Sleep mode Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0      | 1    |       | 0         | 0              | 0              | 0              | 0                     | _              |                | A <sub>0</sub> |                    | A[1:0]: Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 00 Normal Mode [POR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 01 Enter Deep Sleep Mode 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |      |       |           |                |                |                |                       |                |                |                |                    | 11 Enter Deep Sleep Mode 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |      |       |           |                |                |                |                       |                |                |                |                    | After this command initiated, the chip wienter Deep Sleep Mode, BUSY pad will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |      |       |           |                |                |                |                       |                |                |                |                    | keep output high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |      |       |           |                |                |                |                       |                |                |                |                    | Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |      |       |           | - 1            |                |                | - 1                   |                |                |                |                    | To Exit Deep Sleep mode, User require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | man  | d Ta | ble                   |                 |                       |                       |                       |                       |                |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contract of the Contract of th | D/C# | 100  |                       | D6              | D5                    | D4                    | D3                    | D2                    | D1             | D0                    | Command                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 14   | 0                     | 0               | 0                     | 1                     | 0                     | 1                     | 0              | 0                     | HV Ready Detection                      | HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | 0                     | A <sub>6</sub>  | A <sub>5</sub>        | A <sub>4</sub>        | 0                     | A <sub>2</sub>        | A <sub>1</sub> | Ao                    |                                         | A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.                                                                                              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 15   | 0                     | 0               | 0                     | 1                     | 0                     | 1                     | 0              | 1                     | VCI Detection                           | VCI Detection                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | 0                     | 0               | 0                     | 0                     | 0                     | A2                    | A1             | Ao                    | Voi Betestion                           | A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect  A[2:0]   VCI level 011   2.2V 100   2.3V 101   2.4V 110   2.5V 111   2.6V Other   NA  The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.  After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 18   | 0                     | 0               | 0                     | 1                     | 1                     | 0                     | 0              | 0                     | Temperature Sensor                      | Temperature Sensor Selection                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | <b>A</b> <sub>7</sub> | A <sub>6</sub>  | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub>        | A <sub>1</sub> | A <sub>0</sub>        | Control                                 | A[7:0] = 48h [POR], external temperatrure sensor<br>A[7:0] = 80h Internal temperature sensor                                                                                                                                                                                                                                                                                                                         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 1A   | 0                     | 0               | 0                     | 1                     | 1                     | 0                     | 1              | 0                     | Temperature Sensor                      | Write to temperature register.                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | A <sub>11</sub>       | A <sub>10</sub> | <b>A</b> <sub>9</sub> | A <sub>8</sub>        | A <sub>7</sub>        | <b>A</b> <sub>6</sub> | A <sub>5</sub> | <b>A</b> <sub>4</sub> | Control (Write to temperature register) | A[11:0] = 7FFh [POR]                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | <b>A</b> <sub>3</sub> | A <sub>2</sub>  | A <sub>1</sub>        | A <sub>0</sub>        | 0                     | 0                     | 0              | 0                     | tomporaturo register)                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 1B   | 0                     | 0               | 0                     | 1                     | 1                     | 0                     | 1              | 1                     | Temperature Sensor                      | Read from temperature register.                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |      | A <sub>11</sub>       | A <sub>10</sub> | <b>A</b> 9            | A <sub>8</sub>        | <b>A</b> <sub>7</sub> | <b>A</b> <sub>6</sub> | A <sub>5</sub> | <b>A</b> <sub>4</sub> | Control (Read from                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 12   | A <sub>3</sub>        | A <sub>2</sub>  | A <sub>1</sub>        | A <sub>0</sub>        | 0                     | 0                     | 1              | 0                     | temperature register) SW RESET          | It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode  During operation, BUSY pad will output high.  Note: RAM are unaffected by this                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                       |                 |                       |                       |                       |                       |                |                       |                                         | Note: RAM are unaffected by this command.                                                                                                                                                                                                                                                                                                                                                                            |



| Com  | man  | d Ta | ble            |                |                     |                       |                     |                     |                     | · · · ·             |                                           |                                                                                    |
|------|------|------|----------------|----------------|---------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|-------------------------------------------|------------------------------------------------------------------------------------|
| R/W# | D/C# | Hex  | D7             | D6             | D5                  | D4                    | D3                  | D2                  | D1                  | D0                  | Command                                   | Description                                                                        |
| 0    | 0    | 10   | 0              | 0              | 0                   | 1                     | 1                   | 1                   | 0                   | 0                   | Tomporatura Concor                        | Write Command to External temperature                                              |
| 0    | 1    | 1C   | A <sub>7</sub> | A <sub>6</sub> | 0<br>A <sub>5</sub> | 1<br>A <sub>4</sub>   | 1<br>A <sub>3</sub> | 1<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | Ao                  | Temperature Sensor Control (Write Command | Write Command to External temperature sensor.                                      |
| 0    | 1    |      | B <sub>7</sub> | B <sub>6</sub> | B <sub>5</sub>      | B <sub>4</sub>        | B <sub>3</sub>      | B <sub>2</sub>      | B <sub>1</sub>      | Bo                  | to External temperature                   | A[7:0] = 00h [POR],                                                                |
| 0    | 1    | - 8  | C <sub>7</sub> | C <sub>6</sub> | C <sub>5</sub>      | C <sub>4</sub>        | C <sub>3</sub>      | C <sub>2</sub>      | C <sub>1</sub>      | Co                  | sensor)                                   | B[7:0] = 00h [POR],<br>C[7:0] = 00h [POR],                                         |
|      |      |      |                | -00            |                     |                       |                     | 02                  |                     |                     |                                           | C[7:0] = 0011 [FOR],                                                               |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A[7:6]                                                                             |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A[7:6] Select no of byte to be sent 00 Address + pointer                           |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 01 Address + pointer + 1st parameter  Address + pointer + 1st parameter +          |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 2nd pointer                                                                        |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A[5:0] – Pointer Setting                                                           |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | B[7:0] – 1st parameter                                                             |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | C[7:0] – 2 <sup>nd</sup> parameter                                                 |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | The command required CLKEN=1. Refer to Register 0x22 for detail.                   |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           |                                                                                    |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | After this command initiated, Write Command to external temperature sensor         |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | starts. BUSY pad will output high during                                           |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     | × .                                       | operation.                                                                         |
| 0    | 0    | 20   | 0              | 0              | 1                   | 0                     | 0                   | 0                   | 0                   | 0                   | Master Activation                         | Activate Display Update Sequence                                                   |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | The Display Update Sequence Option is located at R22h.                             |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           |                                                                                    |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | BUSY pad will output high during operation. User should not interrupt this         |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | operation to avoid corruption of panel                                             |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | images.                                                                            |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           |                                                                                    |
| 0    | 0    | 21   | 0              | 0              | 1                   | 0                     | 0                   | 0                   | 0                   | 1                   | Display Update Control                    | RAM content option for Display Update<br>A[7:0] = 00h [POR]                        |
| 0    | 1    |      | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>      | <b>A</b> <sub>4</sub> | A <sub>3</sub>      | A <sub>2</sub>      | A <sub>1</sub>      | Ao                  | .5                                        | B[7:0] = 00h [POR]                                                                 |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A[7:4] Red RAM option                                                              |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 0000 Normal                                                                        |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 0100 Bypass RAM content as 0                                                       |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 1000 Inverse RAM content                                                           |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A[3:0] BW RAM option                                                               |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 0000 Normal                                                                        |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 0100 Bypass RAM content as 0<br>1000 Inverse RAM content                           |
| _    |      | 11   |                | _              |                     | 1                     |                     |                     |                     | 1                   | Data Entry made actting                   |                                                                                    |
| 0    | 0    | 11   | 0              | 0              | 0                   | 0                     | 0                   | 0<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 1<br>A <sub>0</sub> | Data Entry mode setting                   | Define data entry sequence<br>A[2:0] = 011 [POR]                                   |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A [1:0] = ID[1:0]                                                                  |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | Address automatic increment / decrement                                            |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | setting The setting of incrementing or                                             |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | decrementing of the address counter can<br>be made independently in each upper and |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | lower bit of the address.                                                          |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 00 –Y decrement, X decrement,<br>01 –Y decrement, X increment,                     |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | 10 –Y increment, X increment,<br>11 –Y increment, X increment [POR]                |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | A[2] = AM                                                                          |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | Set the direction in which the address                                             |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | counter is updated automatically after data are written to the RAM.                |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | AM= 0, the address counter is updated in                                           |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | the X direction. [POR] AM = 1, the address counter is updated in                   |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           | the Y direction.                                                                   |
|      |      |      |                |                |                     |                       |                     |                     |                     |                     |                                           |                                                                                    |



| Com | ıman | d Ta | ble            |                       |                       |                       |                       |                |                |                |                                       |                                                                                                                                |                    |
|-----|------|------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | D/C# |      | D7             | D6                    | D5                    | D4                    | D3                    | D2             | D1             | D0             | Command                               | Description                                                                                                                    |                    |
| 0   | 0    | 22   | 0              | 0                     | 1                     | 0                     | 0                     | 0              | 1              | 0              | Display Update                        | Display Update Sequence Opti                                                                                                   | on:                |
| 0   | 1    |      | A <sub>7</sub> | <b>A</b> <sub>6</sub> | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | Control 2                             | Enable the stage for Master Ac<br>A[7:0]= FFh (POR)                                                                            |                    |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Operating sequence                                                                                                             | Parameter (in Hex) |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal                                                                                                            | 80                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Disable clock signal                                                                                                           | 01                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Enable Analog                                                                                           | C0                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Disable Analog  → Disable clock signal                                                                                         | 03                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Load LUT with DISPLAY Mode 1  → Disable clock signal                                                    | 91                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Load LUT with DISPLAY Mode 2  → Disable clock signal                                                    | 99                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Load temperature value  → Load LUT with DISPLAY Mode 1  → Disable clock signal                          | B1                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Load temperature value  → Load LUT with DISPLAY Mode 2  → Disable clock signal                          | B9                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Enable Analog  → Display with DISPLAY Mode 1  → Disable Analog  → Disable OSC                           | C7                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Enable Analog  → Display with DISPLAY Mode 2  → Disable Analog  → Disable OSC                           | CF                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Enable Analog  → Load temperature value  → DISPLAY with DISPLAY Mode 1  → Disable Analog  → Disable OSC | F7                 |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | Enable clock signal  → Enable Analog  → Load temperature value  → DISPLAY with DISPLAY Mode 2  → Disable Analog  → Disable OSC | FF                 |
| 0   | 0    | 24   | 0              | 0                     | 1                     | 0                     | 0                     | 1              | 0              | 0              | Write RAM (Black White)<br>/ RAM 0x24 | After this command, data entrie written into the BW RAM until a command is written. Address p advance accordingly              | nother             |
|     |      |      |                |                       |                       |                       |                       |                |                |                |                                       | For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =                                        |                    |



| om  | man  | d Ta | ble |    |    |    |                     |                     |                     |                     |                               |                                                                                                                                                                                                                                |
|-----|------|------|-----|----|----|----|---------------------|---------------------|---------------------|---------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /W# | D/C# | Hex  | D7  | D6 | D5 | D4 | D3                  | D2                  | D1                  | D0                  | Command                       | Description                                                                                                                                                                                                                    |
| 0   | 0    | 26   | 0   | 0  | 1  | 0  | 0                   | 1                   | 1                   | 0                   | Write RAM (RED)<br>/ RAM 0x26 | After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.  For Red pixel:                                                                 |
|     |      |      |     |    |    |    |                     |                     |                     |                     |                               | Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0                                                                                                                                |
| 0   | 0    | 27   | 0   | 0  | 1  | 0  | 0                   | 1                   | 1                   | 1                   | Read RAM                      | After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. |
|     |      |      |     |    |    |    |                     |                     |                     |                     |                               | The 1st byte of data read is dummy data.                                                                                                                                                                                       |
| 0   | 0    | 28   | 0   | 0  | 1  | 0  | 1                   | 0                   | 0                   | 0                   | VCOM Sense                    | Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.     |
|     |      |      |     |    |    |    |                     |                     |                     |                     |                               | BUSY pad will output high during operation.                                                                                                                                                                                    |
| 0   | 0    | 20   | 0   | 0  | 4  | 0  | 4                   | 0                   | 0                   | 4                   | VCOM Comes Duration           | Stabling time between autoring VCOM                                                                                                                                                                                            |
| 0   | 1    | 29   | 0   | 1  | 0  | 0  | 1<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 1<br>A <sub>0</sub> | VCOM Sense Duration           | Stabling time between entering VCOM sensing mode and reading acquired.                                                                                                                                                         |
|     |      |      |     |    |    |    |                     |                     |                     |                     |                               | A[3:0] = 9h, duration = 10s.<br>VCOM sense duration = (A[3:0]+1) sec                                                                                                                                                           |
| 0   | 0    | 2A   | 0   | 0  | 1  | 0  | 1                   | 0                   | 1                   | 0                   | Program VCOM OTP              | Program VCOM register into OTP                                                                                                                                                                                                 |
|     |      |      |     |    |    |    |                     |                     |                     |                     | ***                           | The command required CLKEN=1. Refer to Register 0x22 for detail.                                                                                                                                                               |
|     |      |      |     |    |    |    |                     |                     |                     |                     |                               | BUSY pad will output high during operation.                                                                                                                                                                                    |
| 0   | 0    | 2B   | 0   | 0  | 1  | 0  | 1                   | 0                   | 1                   | 1                   | Write Register for VCOM       | This command is used to reduce glitch                                                                                                                                                                                          |
| 0   | 1    |      | 0   | 0  | 0  | 0  | 0                   | 1                   | 0                   | 0                   | Control                       | when ACVCOM toggle. Two data bytes                                                                                                                                                                                             |
| 0   | 1    |      | 0   | 1  | 1  | 0  | 0                   | 0                   | 1                   | 1                   |                               | D04h and D63h should be set for this command.                                                                                                                                                                                  |



| Com  | man  | d Ta | ble                   |                |                |                       |                |                |                |                |                       |            |                           |                                        |               |
|------|------|------|-----------------------|----------------|----------------|-----------------------|----------------|----------------|----------------|----------------|-----------------------|------------|---------------------------|----------------------------------------|---------------|
| R/W# | D/C# | Hex  | D7                    | D6             | D5             | D4                    | D3             | D2             | D1             | D0             | Command               | Descript   | ion                       |                                        |               |
| 0    | 0    | 2C   | 0                     | 0              | 1              | 0                     | 1              | 1              | 0              | 0              | Write VCOM register   | •          |                           | er from M                              | ICU interface |
| 0    | 1    |      | <b>A</b> <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub>        | Аз             | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |                       | A[7:0] = 0 | 00h [POR]                 |                                        |               |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | A[7:0]     | VCOM                      | A[7:0]                                 | VCOM          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 08h        | -0.2                      | 44h                                    | -1.7          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 0Ch        | -0.3                      | 48h                                    | -1.8          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 10h        | -0.4                      | 4Ch                                    | -1.9          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 14h        | -0.5                      | 50h                                    | -2            |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 18h        | -0.6                      | 54h                                    | -2.1          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 1Ch        | -0.7                      | 58h                                    | -2.2          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 20h        | -0.8                      | 5Ch                                    | -2.3          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 24h        | -0.9                      | 60h                                    | -2.4          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 28h        | -1                        | 64h                                    | -2.5          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 2Ch        | -1.1                      | 68h                                    | -2.6          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 30h        | -1.2                      | 6Ch                                    | -2.7          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 34h        | -1.3                      | 70h                                    | -2.8          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 38h        | -1.4                      | 74h                                    | -2.9          |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 3Ch        | -1.5                      | 78h                                    | -3            |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | 40h        | -1.6                      | Other                                  | NA            |
|      |      |      |                       |                |                |                       |                |                |                |                |                       | E.         |                           | ************************************** | No. 10.10     |
| 0    | 0    | 2D   | 0                     | 0              | 1              | 0                     | 1              | 1              | 0              | 1              | OTP Register Read for | Read R     | egister for               | Display (                              | Option:       |
| 1    | 1    |      | A <sub>7</sub>        | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub>        | Аз             | A <sub>2</sub> | A <sub>1</sub> | Ao             | Display Option        | A [7.0]. \ | COMOT                     | D 0-14                                 |               |
| 1    | 1    |      | B <sub>7</sub>        | B <sub>6</sub> | B <sub>5</sub> | B <sub>4</sub>        | Вз             | B <sub>2</sub> | B <sub>1</sub> | Bo             |                       |            | VCOM OT and 0x37,         |                                        | on            |
| 1    | 1    |      | C <sub>7</sub>        | C <sub>6</sub> | C <sub>5</sub> | C <sub>4</sub>        | Сз             | C <sub>2</sub> | C <sub>1</sub> | Co             |                       | (Commi     | and oxor,                 | Dyte A)                                |               |
| 1    | 1    |      | D <sub>7</sub>        | D <sub>6</sub> | D <sub>5</sub> | D <sub>4</sub>        | Dз             | D <sub>2</sub> | D <sub>1</sub> | Do             | -                     | B[7:0]: \  | VCOM Reg                  | gister                                 |               |
| 1    | 1    |      | E <sub>7</sub>        | E <sub>6</sub> | E <sub>5</sub> | E <sub>4</sub>        | E <sub>3</sub> | E <sub>2</sub> | Εı             | Eo             |                       | (Comm      | and 0x2C)                 |                                        |               |
| 1    | 1    |      | F <sub>7</sub>        | F <sub>6</sub> | F <sub>5</sub> | F <sub>4</sub>        | F <sub>3</sub> | F <sub>2</sub> | F <sub>1</sub> | Fo             |                       | 0[7.0]     | 0[7.0]. D:-               |                                        | le:           |
| 1    | 1    |      | G <sub>7</sub>        | G <sub>6</sub> | G <sub>5</sub> | G <sub>4</sub>        | G <sub>3</sub> | G <sub>2</sub> | G <sub>1</sub> | Go             |                       |            | G[7:0]: Dis<br>and 0x37,  |                                        |               |
|      | -    |      |                       |                |                |                       |                |                | _              |                | -                     | [5 bytes   |                           | Dyle D lo                              | byte i )      |
| 1    | 1    |      | H <sub>7</sub>        | H <sub>6</sub> | H <sub>5</sub> | H <sub>4</sub>        | Нз             | H <sub>2</sub> | H <sub>1</sub> | H <sub>0</sub> |                       | [o b) too  | 1                         |                                        |               |
| 1    | 1    |      | <b>I</b> <sub>7</sub> | 16             | 15             | <b>I</b> <sub>4</sub> | l <sub>3</sub> | 12             | l <sub>1</sub> | l <sub>0</sub> |                       |            | K[7:0]: Wa                |                                        |               |
| 1    | 1    |      | J <sub>7</sub>        | J <sub>6</sub> | J <sub>5</sub> | J <sub>4</sub>        | J <sub>3</sub> | J <sub>2</sub> | J <sub>1</sub> | Jo             | _                     |            | and 0x37,                 | Byte G to                              | Byte J)       |
| 1    | 1    |      | K <sub>7</sub>        | K <sub>6</sub> | K <sub>5</sub> | K <sub>4</sub>        | Кз             | K <sub>2</sub> | K <sub>1</sub> | Ko             |                       | [4 bytes   | 5]                        |                                        |               |
| _    |      |      |                       |                |                |                       |                |                |                |                |                       |            |                           |                                        |               |
| 0    | 0    | 2E   | 0                     | 0              | 1              | 0                     | 1              | 1              | 1              | 0              | User ID Read          |            |                           |                                        | ed in OTP:    |
| 1    | 1    |      | A <sub>7</sub>        | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub>        | Аз             | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |                       |            | [[7:0]: Use<br>[10 bytes] | TID (R38,                              | Byte A and    |
| 1    | 1    |      | B <sub>7</sub>        | B <sub>6</sub> | B <sub>5</sub> | B <sub>4</sub>        | Вз             | B <sub>2</sub> | B <sub>1</sub> | Bo             |                       | Dyte J)    | io bytes]                 |                                        |               |
| 1    | 1    |      | C <sub>7</sub>        | C <sub>6</sub> | C <sub>5</sub> | C <sub>4</sub>        | Сз             | C <sub>2</sub> | C <sub>1</sub> | Co             |                       | f          |                           |                                        |               |
| 1    | 1    |      | D <sub>7</sub>        | D <sub>6</sub> | D <sub>5</sub> | D <sub>4</sub>        | Dз             | D <sub>2</sub> | D <sub>1</sub> | Do             | 1                     | 3          |                           |                                        |               |
| 1    | 1    |      | E <sub>7</sub>        | E <sub>6</sub> | E <sub>5</sub> | E <sub>4</sub>        | E <sub>3</sub> | E <sub>2</sub> | E <sub>1</sub> | Eo             |                       | 2          |                           |                                        |               |
| 1    | 1    |      | F <sub>7</sub>        | F <sub>6</sub> | F <sub>5</sub> | F <sub>4</sub>        | F <sub>3</sub> | F <sub>2</sub> | F <sub>1</sub> | Fo             | 1                     |            |                           |                                        |               |
| 1    | 1    |      |                       | 7000000        | 11/1/10/10     | G <sub>4</sub>        | 1100000        | 1,000,000      | 2              | 10000000       | -                     |            |                           |                                        |               |
| - 22 |      |      | G <sub>7</sub>        | G <sub>6</sub> | G <sub>5</sub> | 7,000,000             | G <sub>3</sub> | G <sub>2</sub> | G <sub>1</sub> | G <sub>0</sub> |                       | 7          |                           |                                        |               |
| 1    | 1    |      | H <sub>7</sub>        | H <sub>6</sub> | H <sub>5</sub> | H <sub>4</sub>        | H <sub>3</sub> | H <sub>2</sub> | H₁             | H <sub>0</sub> | -                     | - [:       |                           |                                        |               |
| 1    | 1    |      | 17                    | <b>I</b> 6     | 15             | 14                    | 13             | 12             | l <sub>1</sub> | lo             |                       | 2          |                           |                                        |               |
| 1    | 1    |      | J <sub>7</sub>        | J <sub>6</sub> | J <sub>5</sub> | J <sub>4</sub>        | J <sub>3</sub> | J <sub>2</sub> | J <sub>1</sub> | Jo             |                       |            |                           |                                        |               |



|   | man<br>D/C# |    |                | D6             | D5                   | D4             | D3             | D2                   | D1                  | D0                  | Command                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|-------------|----|----------------|----------------|----------------------|----------------|----------------|----------------------|---------------------|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0           | 2F | 0              | 0              | 1                    | 0              | 1              | 1                    | 1                   | 1                   | Status Bit Read                         | Read IC status Bit [POR 0x01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 | 1           | 21 | 0              | 0              | A <sub>5</sub>       | A <sub>4</sub> | 0              | 0                    | 1<br>A <sub>1</sub> | Ao                  | Status Bit Read                         | Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01]  Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 550         |    |                | 1              |                      |                | - V            | - X000               | 61<br>850/4         |                     | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 | 0           | 30 | 0              | 0              | 1                    | 1              | 0              | 0                    | 0                   | 0                   | Program WS OTP                          | Program OTP of Waveform Setting The contents should be written into RAM before sending this command.  The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 | 0           | 31 | 0              | 0              | 1                    | 1              | 0              | 0                    | 0                   | 1                   | Load WS OTP                             | Load OTP of Waveform Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ŭ | 3           |    | 5              |                | 124                  |                | 3              | · ·                  | · ·                 |                     | ESGG WE STI                             | The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _ |             |    | _              |                |                      |                | _              |                      |                     |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 | 0           | 32 | 0              | 0              | 1                    | 1              | 0              | 0                    | 1                   | 0                   | Write LUT register                      | Write LUT register from MCU interface [153 bytes], which contains the content o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 | 1           |    | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>       | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub>       | A <sub>1</sub>      | A <sub>0</sub>      |                                         | VS[nX-LUTm], TP[nX], RP[n], SR[nXY],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 | 1           |    | :              |                |                      | ٠.             |                |                      |                     |                     |                                         | and FR[n] Refer to Session 6.7 WAVEFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 1           |    | 790            |                |                      |                |                |                      |                     |                     |                                         | SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |             |    | _              | _              | 4                    | 4              | 0              | 4                    | 0                   | _                   | CDC calculation                         | CDC salaulation as a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 | ^           | 24 |                | 0              | 1                    | 1              | 0              | 1                    | 0                   | 0                   | CRC calculation                         | CRC calculation command For details, please refer to SSD1681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 | 0           | 34 | 0              |                |                      |                |                |                      |                     |                     |                                         | application note.  BUSY pad will output high during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 | 0           | 34 | 0              |                |                      |                |                |                      |                     |                     |                                         | A A LINE OF THE STATE OF THE ST |
| 0 | 0           | 34 | 0              | 0              | 1                    | 1              | 0              | 1                    | 0                   | 1                   | CRC Status Read                         | BUSY pad will output high during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 34          |    |                |                | 1<br>A <sub>13</sub> |                | 100            | 1<br>A <sub>10</sub> | 0<br>A <sub>9</sub> | 1<br>A <sub>8</sub> | CRC Status Read                         | BUSY pad will output high during operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



|      | man  |       |                       | Da                    | Do                    | D.             | D.             | Da                    | D.             | - DO           | 0                          | Di-ti                                                                                                                 |
|------|------|-------|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|----------------|----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| /W#  | D/C# |       |                       | D6                    | D5                    | D4             | D3             | D2                    | D1             | D0             | Command                    | Description                                                                                                           |
| 0    | 0    | 36    | 0                     | 0                     | 1                     | 1              | 0              | 1                     | 1              | 0              | Program OTP selection      | Program OTP Selection according to the OTP Selection Control [R37h and R38h]                                          |
|      |      |       |                       |                       |                       |                |                |                       |                |                |                            | The command required CLKEN=1.<br>Refer to Register 0x22 for detail.<br>BUSY pad will output high during<br>operation. |
|      |      |       |                       |                       |                       |                |                |                       |                |                |                            |                                                                                                                       |
| 0    | 0    | 37    | 0                     | 0                     | 1                     | 1              | 0              | 1                     | 1              | 1              | Write Register for Display |                                                                                                                       |
| 0    | 1    |       | <b>A</b> <sub>7</sub> | 0                     | 0                     | 0              | 0              | 0                     | 0              | 0              | Option                     | A[7] Spare VCOM OTP selection 0: Default [POR]                                                                        |
| 0    | 1    |       | B <sub>7</sub>        | B <sub>6</sub>        | B <sub>5</sub>        | B <sub>4</sub> | Вз             | B <sub>2</sub>        | B <sub>1</sub> | B <sub>0</sub> |                            | 1: Spare                                                                                                              |
| 0    | 1    |       | C <sub>7</sub>        | C <sub>6</sub>        | C <sub>5</sub>        | C <sub>4</sub> | C <sub>3</sub> | C <sub>2</sub>        | C <sub>1</sub> | Co             |                            | DIZ-01 Disels Made for MOIZ-01                                                                                        |
| 0    | 1    |       | D <sub>7</sub>        | D <sub>6</sub>        | D <sub>5</sub>        | D <sub>4</sub> | D <sub>3</sub> | D <sub>2</sub>        | D <sub>1</sub> | D <sub>0</sub> |                            | B[7:0] Display Mode for WS[7:0]<br>C[7:0] Display Mode for WS[15:8]                                                   |
| 0    | 1    |       | E <sub>7</sub>        | E <sub>6</sub>        | E <sub>5</sub>        | E <sub>4</sub> | E <sub>3</sub> | E <sub>2</sub>        | E <sub>1</sub> | E <sub>0</sub> |                            | D[7:0] Display Mode for WS[23:16]                                                                                     |
| 0    | 1    |       | 0                     | F <sub>6</sub>        | 0                     | 0              | F <sub>3</sub> | F <sub>2</sub>        | F <sub>1</sub> | Fo             |                            | E[7:0] Display Mode for WS[31:24]                                                                                     |
| 0    | 1    |       | G <sub>7</sub>        | G <sub>6</sub>        | G <sub>5</sub>        | G <sub>4</sub> | G <sub>3</sub> | G <sub>2</sub>        | G <sub>1</sub> | G₀             |                            | F[3:0 Display Mode for WS[35:32]<br>0: Display Mode 1                                                                 |
| 0    | 1    |       | H <sub>7</sub>        | H <sub>6</sub>        | H <sub>5</sub>        | H <sub>4</sub> | Нз             | H <sub>2</sub>        | H <sub>1</sub> | Ho             |                            | 1: Display Mode 2                                                                                                     |
| 0    | 1    |       | J <sub>7</sub>        | l <sub>6</sub>        | <b>J</b> <sub>5</sub> | I <sub>4</sub> | <sub>3</sub>   | <b>J</b> <sub>2</sub> | l₁<br>J₁       | I <sub>0</sub> | _                          | FIG. Bi- B (- Bi- I- M- I- 0                                                                                          |
| U    | 1    |       | J7                    | <b>J</b> 6            | <b>J</b> 5            | J4             | <b>J</b> 3     | <b>J</b> 2            | J1             | <b>J</b> 0     |                            | F[6]: PingPong for Display Mode 2<br>0: RAM Ping-Pong disable [POR]<br>1: RAM Ping-Pong enable                        |
|      |      |       |                       |                       |                       |                |                |                       |                |                |                            | G[7:0]~J[7:0] module ID /waveform version.                                                                            |
|      |      |       |                       |                       |                       |                |                |                       |                |                |                            | Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support of Display Mode 1             |
| _    |      | 12121 | -                     | 1121                  |                       |                | - 4            |                       |                |                |                            |                                                                                                                       |
| 0    | 0    | 38    | 0                     | 0                     | 1                     | 1              | 1              | 0                     | 0              | 0              | Write Register for User IL | Write Register for User ID<br>A[7:0]]~J[7:0]: UserID [10 bytes]                                                       |
| 0    | 1    |       | A <sub>7</sub>        | A <sub>6</sub>        | A <sub>5</sub>        | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub>        | A <sub>1</sub> | A <sub>0</sub> |                            | A[1.0]] o[1.0]. Oscilo [10 bytes]                                                                                     |
| 0    | 1    |       | B <sub>7</sub>        | B <sub>6</sub>        | B <sub>5</sub>        | B <sub>4</sub> | B <sub>3</sub> | B <sub>2</sub>        | B <sub>1</sub> | B <sub>0</sub> |                            | Remarks: A[7:0]~J[7:0] can be stored in                                                                               |
| 0    | 1    |       | D <sub>7</sub>        | D <sub>6</sub>        | D <sub>5</sub>        | D <sub>4</sub> | D <sub>3</sub> | D <sub>2</sub>        | D <sub>1</sub> | D <sub>0</sub> | _                          | OTP                                                                                                                   |
| 0    | 1    |       | E <sub>7</sub>        | E <sub>6</sub>        | E <sub>5</sub>        | E <sub>4</sub> | E <sub>3</sub> | E <sub>2</sub>        | E <sub>1</sub> | E <sub>0</sub> |                            |                                                                                                                       |
| 0    | 1    |       | F <sub>7</sub>        | F <sub>6</sub>        | F <sub>5</sub>        | F <sub>4</sub> | F <sub>3</sub> | F <sub>2</sub>        | F <sub>1</sub> | Fo             |                            |                                                                                                                       |
| 0    | 1    |       | G <sub>7</sub>        | G <sub>6</sub>        | G <sub>5</sub>        | G <sub>4</sub> | G <sub>3</sub> | G <sub>2</sub>        | G <sub>1</sub> | Go             |                            |                                                                                                                       |
| 0    | 1    |       | H <sub>7</sub>        | H <sub>6</sub>        | H <sub>5</sub>        | H <sub>4</sub> | H <sub>3</sub> | H <sub>2</sub>        | H <sub>1</sub> | Ho             |                            |                                                                                                                       |
| 0    | 1    |       | l <sub>7</sub>        | I <sub>6</sub>        | l <sub>5</sub>        | 14             | l <sub>3</sub> | l <sub>2</sub>        | I <sub>1</sub> | lo             |                            |                                                                                                                       |
| 0    | 1    |       | J <sub>7</sub>        | <b>J</b> <sub>6</sub> | <b>J</b> <sub>5</sub> | J <sub>4</sub> | J <sub>3</sub> | J <sub>2</sub>        | J <sub>1</sub> | Jo             |                            |                                                                                                                       |
| arti |      |       | -1                    | -0                    | -0                    | - "            | -0             | -2                    |                |                | 1                          |                                                                                                                       |
| 0    | 0    | 39    | 0                     | 0                     | 1                     | 1              | 1              | 0                     | 0              | 1              | OTP program mode           | OTP program mode                                                                                                      |
| 0    | 1    |       | 0                     | 0                     | 0                     | 0              | 0              | 0                     | A <sub>1</sub> | Ao             |                            | A[1:0] = 00: Normal Mode [POR]<br>A[1:0] = 11: Internal generated OTP<br>programming voltage                          |
|      |      |       |                       |                       |                       |                |                |                       |                |                |                            | Remark: User is required to EXACTLY follow the reference code sequences                                               |



|                            | man     | 200       |                               |                                    |                                                  |                                                |                                 |                                 |                                 | T                                     | -                                          |                                                                                     |                                                                                                                           |
|----------------------------|---------|-----------|-------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| /W#                        | D/C#    | Hex       | D7                            | D6                                 | D5                                               | D4                                             | D3                              | D2                              | D1                              | D0                                    | Command                                    | Description                                                                         | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                  |
| 0                          | 0       | 3C        | 0<br>A <sub>7</sub>           | 0<br>A <sub>6</sub>                | 1<br>A <sub>5</sub>                              | 1<br>A <sub>4</sub>                            | 0                               | 1<br>A <sub>2</sub>             | 0<br>A <sub>1</sub>             | O<br>Ao                               | Border Waveform Control                    | A[7:0] = C0                                                                         | der waveform for VBD<br>0h [POR], set VBD as HIZ.                                                                         |
|                            | ANT     |           |                               |                                    | 2003100                                          | S2 1 60 42                                     |                                 | No.                             | 9,40,052                        | and the second                        |                                            |                                                                                     | elect VBD option                                                                                                          |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | A[7:6]                                                                              | Select VBD as                                                                                                             |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 00                                                                                  | GS Transition, Defined in A[2] and                                                                                        |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 01                                                                                  | A[1:0] Fix Level, Defined in A[5:4]                                                                                       |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 10                                                                                  | VCOM                                                                                                                      |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 11[POR]                                                                             |                                                                                                                           |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | A [5:4] Fix                                                                         | Level Setting for VBD                                                                                                     |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | A[5:4]                                                                              | VBD level                                                                                                                 |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 00                                                                                  | VSS                                                                                                                       |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 01                                                                                  | VSH1                                                                                                                      |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 10                                                                                  | VSL                                                                                                                       |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 11                                                                                  | VSH2                                                                                                                      |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | AIOLOG T                                                                            | ansition control                                                                                                          |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            |                                                                                     |                                                                                                                           |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | A[2]                                                                                | GS Transition control                                                                                                     |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 0                                                                                   | Follow LUT                                                                                                                |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            |                                                                                     | (Output VCOM @ RED)                                                                                                       |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 1                                                                                   | Follow LUT                                                                                                                |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            |                                                                                     | Transition setting for VBD                                                                                                |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | A[1:0]                                                                              | VBD Transition                                                                                                            |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 00                                                                                  | LUT0                                                                                                                      |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 01                                                                                  | LUT1                                                                                                                      |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 10                                                                                  | LUT2                                                                                                                      |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | 11                                                                                  | LUT3                                                                                                                      |
| 0                          | 0       | 3F        | 0                             | 0                                  | 1                                                | 1                                              | 1                               | 1                               | 1                               | 1                                     | End Option (EOPT)                          | Option for                                                                          | I UT end                                                                                                                  |
| 0                          | 1       | 1 T T T T | A <sub>7</sub>                | A <sub>6</sub>                     | A <sub>5</sub>                                   | A <sub>4</sub>                                 | A <sub>3</sub>                  | A <sub>2</sub>                  | A <sub>1</sub>                  | Ao                                    |                                            | A[7:0] = 02                                                                         | h [POR]                                                                                                                   |
|                            |         |           |                               | 100                                | 155                                              | 10.000                                         | 0.00                            | 1000                            | - 166                           |                                       |                                            |                                                                                     | rmal.                                                                                                                     |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            |                                                                                     | urce output level keep                                                                                                    |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 |                                 |                                       |                                            | pre                                                                                 | evious output before power off                                                                                            |
| 0                          | 0       | 41        | 0                             | 1                                  | 0                                                | 0                                              | 0                               | 0                               | 0                               | 1                                     | Read RAM Option                            | Read RAM                                                                            | 1 Option                                                                                                                  |
| 0                          | 1       |           | 0                             | 0                                  | 0                                                | 0                                              | 0                               | 0                               | 0                               | Ao                                    |                                            | A[0] = 0 [P(                                                                        | OR]                                                                                                                       |
|                            |         |           |                               |                                    |                                                  |                                                |                                 |                                 | 1550                            |                                       |                                            |                                                                                     | AM corresponding to RAM0x2<br>AM corresponding to RAM0x2                                                                  |
|                            |         | 9         |                               | N 40                               |                                                  | 0                                              | 0                               | 1                               | 0                               | 0                                     | Set RAM X - address                        | Specify the                                                                         | e start/end positions of the                                                                                              |
| 0                          | 0       | 44        | 0                             | 1                                  | ()                                               |                                                | 0                               |                                 | -                               | Ao                                    | Start / End position                       | window ad                                                                           | dress in the X direction by an                                                                                            |
|                            | 0       | 44        | 0                             | 1                                  | 0                                                | _                                              | Λ                               | Λ.                              |                                 |                                       | pooliion                                   |                                                                                     |                                                                                                                           |
| 0                          | 1       | 44        | 0                             | 0                                  | <b>A</b> <sub>5</sub>                            | <b>A</b> <sub>4</sub>                          | A <sub>3</sub>                  | A <sub>2</sub>                  | A <sub>1</sub>                  | -                                     | 1                                          | address ur                                                                          | nit for RAM                                                                                                               |
| 0                          |         | 44        |                               | - 22                               | -                                                | _                                              | A <sub>3</sub>                  | B <sub>2</sub>                  | B <sub>1</sub>                  | B <sub>0</sub>                        |                                            | A[5:0]: XS                                                                          | A[5:0], XStart, POR = 00h                                                                                                 |
| 0                          | 1       | 44        | 0                             | 0                                  | <b>A</b> <sub>5</sub>                            | <b>A</b> <sub>4</sub>                          |                                 | 100                             |                                 | -                                     |                                            | A[5:0]: XS                                                                          |                                                                                                                           |
| 0                          | 1 1 0   | 44        | 0 0                           | 0 0                                | A <sub>5</sub> B <sub>5</sub>                    | A <sub>4</sub> B <sub>4</sub>                  | B <sub>3</sub>                  | B <sub>2</sub>                  | B <sub>1</sub>                  | B <sub>0</sub>                        | Set Ram Y- address                         | A[5:0]: XS/<br>B[5:0]: XE/<br>Specify the                                           | A[5:0], XStart, POR = 00h<br>A[5:0], XEnd, POR = 15h<br>e start/end positions of the                                      |
| 0 0 0                      | 1 1 0 1 |           | 0<br>0<br>0<br>A <sub>7</sub> | 0<br>0<br>1<br>A <sub>6</sub>      | A <sub>5</sub> B <sub>5</sub> 0 A <sub>5</sub>   | A <sub>4</sub> B <sub>4</sub> 0 A <sub>4</sub> | B <sub>3</sub> 0 A <sub>3</sub> | B <sub>2</sub> 1 A <sub>2</sub> | B <sub>1</sub> 0 A <sub>1</sub> | B <sub>0</sub>                        | Set Ram Y- address<br>Start / End position | A[5:0]: XSA<br>B[5:0]: XEA<br>Specify the<br>window ad                              | A[5:0], XStart, POR = 00h<br>A[5:0], XEnd, POR = 15h                                                                      |
| 0 0 0 0                    | 0 1 1   |           | 0<br>0<br>0<br>A <sub>7</sub> | 0<br>0<br>1<br>A <sub>6</sub><br>0 | A <sub>5</sub> B <sub>5</sub> 0 A <sub>5</sub> 0 | 0<br>A <sub>4</sub><br>0                       | 0<br>A <sub>3</sub><br>0        | 1<br>A <sub>2</sub><br>0        | 0<br>A <sub>1</sub><br>0        | 1<br>A <sub>0</sub><br>A <sub>8</sub> |                                            | A[5:0]: XS,<br>B[5:0]: XE,<br>Specify the<br>window ad<br>address ur                | A[5:0], XStart, POR = 00h A[5:0], XEnd, POR = 15h e start/end positions of the dress in the Y direction by an hit for RAM |
| 0<br>0<br>0<br>0<br>0<br>0 | 1 1 0 1 |           | 0<br>0<br>0<br>A <sub>7</sub> | 0<br>0<br>1<br>A <sub>6</sub>      | A <sub>5</sub> B <sub>5</sub> 0 A <sub>5</sub>   | A <sub>4</sub> B <sub>4</sub> 0 A <sub>4</sub> | B <sub>3</sub> 0 A <sub>3</sub> | B <sub>2</sub> 1 A <sub>2</sub> | B <sub>1</sub> 0 A <sub>1</sub> | B <sub>0</sub>                        |                                            | A[5:0]: XSA<br>B[5:0]: XEA<br>Specify the<br>window ad<br>address un<br>A[8:0]: YSA | A[5:0], XStart, POR = 00h<br>A[5:0], XEnd, POR = 15h<br>e start/end positions of the<br>dress in the Y direction by       |



| Com           | man  | d Ta     | ble            |                |                       |                       |                       |                       |                |                       |                        |                                                                                                                                              |                                        |                                |                                   |
|---------------|------|----------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------|
|               | D/C# |          | D7             | D6             | D5                    | D4                    | D3                    | D2                    | D1             | D0                    | Command                | Descripti                                                                                                                                    | on                                     |                                |                                   |
| 0             | 0    | 46       | 0              | 1              | 0                     | 0                     | 0                     | 1                     | 1              | 0                     | Auto Write RED RAM for | -                                                                                                                                            |                                        | M for Rea                      | ular Patter                       |
| 0             | 1    |          | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub>        | 0                     | A <sub>2</sub>        | A <sub>1</sub> | Ao                    | Regular Pattern        | A[7:0] = 0                                                                                                                                   |                                        |                                |                                   |
|               |      |          |                |                |                       |                       | la di                 |                       |                |                       |                        | A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accord to Gate  A[6:4] Height A[6:4] Height |                                        |                                | 0<br>on accordir                  |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 000                                                                                                                                          | 8                                      | 100                            | 128                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        |                                                                                                                                              |                                        |                                |                                   |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 001                                                                                                                                          | 16                                     | 101                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 010                                                                                                                                          | 32                                     | 110                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 011                                                                                                                                          | 64                                     | 111                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | to Source                                                                                                                                    | ter RAM ir                             | X-direction                    | on accordi                        |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | A[2:0]                                                                                                                                       | Width                                  | A[2:0]                         | Width                             |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 000                                                                                                                                          | 8                                      | 100                            | 128                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 001                                                                                                                                          | 16                                     | 101                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 010                                                                                                                                          | 32                                     | 110                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 011                                                                                                                                          | 64                                     | 111                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                | A                     |                        | BUSY pad<br>operation.                                                                                                                       |                                        | ut high du                     | ring                              |
| 0             | 0    | 47       | 0              | 1              | 0                     | 0                     | 0                     | 1                     | 1              | 1                     | Auto Write B/W RAM for | Auto Write                                                                                                                                   | e B/W RAI                              | M for Reg                      | ular Patter                       |
| 0             | 1    |          | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub>        | 0                     | A <sub>2</sub>        | A <sub>1</sub> | Ao                    | Regular Pattern        | A[7:0] = 0                                                                                                                                   |                                        | Wildi Rog                      | aidi i diloi                      |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | A[7]: The<br>A[6:4]: Ste<br>Step of al<br>to Gate<br>A[6:4]                                                                                  | ep Height,                             | POR= 00                        |                                   |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 000                                                                                                                                          | 8                                      |                                | 128                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        |                                                                                                                                              |                                        | 100                            |                                   |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 001                                                                                                                                          | 16                                     | 101                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 010                                                                                                                                          | 32                                     | 110                            | 200                               |
|               |      |          |                |                |                       |                       |                       |                       |                |                       |                        | 011                                                                                                                                          | 64                                     | 111                            | 200                               |
| n             | 0    | 4E       | 0              | 1              | 0                     | 0                     | 1                     | 1                     | 1              |                       | Set RAM X address      | A[2:0]: Step of all to Source A[2:0] 000 001 010 011  During op high.                                                                        | Width 8 16 32 64 eration, B            | A[2:0] 100 101 110 111 USY pad | Width 128 200 200 200 will output |
| )             | 0    | 4E       | 0              | 1              | 0                     | 0                     | 1                     | 1                     | 1              | 0                     | Set RAM X address      | Make initi                                                                                                                                   |                                        |                                |                                   |
| 0             | 1    |          | 0              | 0              | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | <b>A</b> <sub>2</sub> | A <sub>1</sub> | <b>A</b> <sub>0</sub> | odino                  | A[5:0]: 00                                                                                                                                   |                                        | - Coo count                    |                                   |
| )             | 0    | 4F       | 0              | 1              | 0                     | 0                     | 1                     | 1                     | 1              | 1                     | Set RAM Y address      | Make initi                                                                                                                                   | al settings                            | for the R                      | AM Y                              |
| $\rightarrow$ | 1    |          | _              |                |                       |                       |                       |                       |                | A <sub>0</sub>        | counter                | address in                                                                                                                                   |                                        |                                |                                   |
| )             | 1    | $\dashv$ | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub>        | A <sub>3</sub>        | A <sub>2</sub>        | A <sub>1</sub> | A <sub>0</sub>        |                        | A[8:0]: 00                                                                                                                                   |                                        |                                | V/                                |
| )             | 0    | 7F       | 0              | 1              | 1                     | 1                     | 1                     | 1                     | 1              |                       | NOP                    |                                                                                                                                              | have any e<br>it can be ι<br>emory Wri | effect on the                  |                                   |



### 7. Electrical Characteristics

### 7.1. Absolute maximum rating

| Parameter                | Symbol | Rating           | Unit |
|--------------------------|--------|------------------|------|
| Logic supply voltage     | VCI    | -0.5 to +4.0     | V    |
| Logic Input voltage      | VIN    | -0.5 to VCI +0.5 | V    |
| Logic Output voltage     | VOUT   | -0.5 to VCI +0.5 | V    |
| Operating Temp range     | TOPR   | 0 to +40         | °C   |
| Storage Temp range       | TSTG   | -25 to+60        | °C   |
| Optimal Storage Temp     | TSTGo  | 23±2             | °C   |
| Optimal Storage Humidity | HSTGo  | 55±10            | %RH  |

### 7.2. Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

| Parameter                 | Symbol                | Conditions                                                    | Applica<br>ble pin | Min.                | Тур.  | Max                 | Units |
|---------------------------|-----------------------|---------------------------------------------------------------|--------------------|---------------------|-------|---------------------|-------|
| Single ground             | $V_{ss}$              | -                                                             |                    | -                   | 0     | -                   | V     |
| Logic supply voltage      | $V_{CI}$              | -                                                             | VCI                | 2.2                 | 3.0   | 3.7                 | V     |
| Core logic voltage        | $V_{\mathrm{DD}}$     |                                                               | VDD                | 1.7                 | 1.8   | 1.9                 | V     |
| High level input voltage  | $V_{IH}$              | -                                                             | -                  | 0.8 V <sub>CI</sub> | -     | -                   | V     |
| Low level input voltage   | $V_{\rm IL}$          | -                                                             | -                  | -                   | -     | 0.2 V <sub>CI</sub> | V     |
| High level output voltage | V <sub>OH</sub>       | IOH = -100uA                                                  | -                  | 0.9 VCI             | -     | -                   | V     |
| Low level output voltage  | V <sub>OL</sub>       | IOL = 100uA                                                   | -                  | -                   | -     | 0.1 V <sub>CI</sub> | V     |
| Typical power             | P <sub>TYP</sub>      | V <sub>CI</sub> =3.0 V                                        | -                  | -                   | 7.5   | -                   | mW    |
| Deep sleep mode           | P <sub>STPY</sub>     | V <sub>CI</sub> =3.0 V                                        | -                  | -                   | 0.003 | -                   | mW    |
| Typical operating current | Iopr_V <sub>CI</sub>  | V <sub>CI</sub> =3.0 V                                        | -                  | -                   | 2.5   | -                   | mA    |
| Image update time         | -                     | 25 °C                                                         | -                  | -                   | 16    | -                   | sec   |
| Sleep mode current        | Islp_V <sub>CI</sub>  | DC/DC off<br>No clock<br>No input load<br>Ram data retain     | -                  | -                   | 20    |                     | uA    |
| Deep sleep mode current   | Idslp_V <sub>CI</sub> | DC/DC off<br>No clock<br>No input load<br>Ram data not retain | -                  | -                   | 1     | 5                   | uA    |

<sup>-</sup>The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern.

<sup>-</sup> The standby power is the consumed power when the panel controller is in standby mode.

<sup>-</sup>The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display

<sup>-</sup>Vcom is recommended to be set in the range of assigned value  $\pm$  0.1V. The Typical power consumption



### 7.3. Panel AC Characteristics

### 7.3.1. MCU Interface

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

|                                                       |     | Pin Name |     |      |     |     |  |  |  |  |
|-------------------------------------------------------|-----|----------|-----|------|-----|-----|--|--|--|--|
| MCU Interface                                         | BS1 | RES#     | CS# | D/C# | SCL | SDA |  |  |  |  |
| 4-wire serial peripheral interface (SPI)              | L   | RES#     | CS# | DC#  | SCL | SDA |  |  |  |  |
| 3-wire serial peripheral interface (SPI) – 9 bits SPI | Н   | RES#     | CS# | L    | SCL | SDA |  |  |  |  |

Table 7-1: Interface pins assignment under different MCU interface

Note: (1) L is connected to  $V_{ss}$  and H is connected to  $V_{DDIO}$ 

# 7.3.1.2. MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

| Function      | SCL pin  | SDA pin     | D/C# pin | CS# pin |
|---------------|----------|-------------|----------|---------|
| Write command | 1        | Command bit | L        | L       |
| Write data    | <b>↑</b> | Data bit    | Н        | L       |

Table 7-2: Control pins status of 4-wire SPI

#### Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2)  $\square$  stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

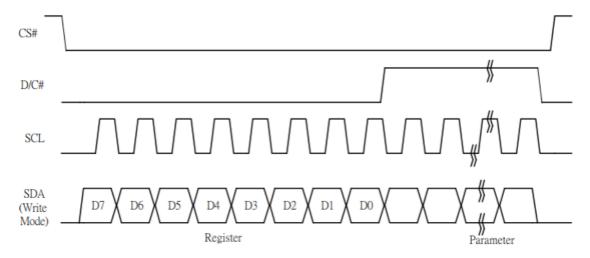



Figure 7-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

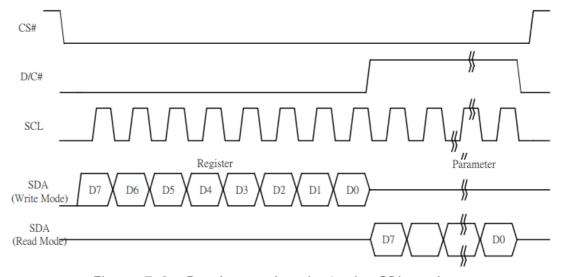



Figure 7-2: Read procedure in 4-wire SPI mode



### 7.3.1.3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4- wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

| Function      | SCL pin | SDA pin     | D/C# pin | CS# pin |
|---------------|---------|-------------|----------|---------|
| Write command | 1       | Command bit | Tie LOW  | L       |
| Write data    | 1       | Data bit    | Tie LOW  | L       |

Table 7-3: Control pins status of 3-wire SPI

Note: (1) L is connected to  $V_{ss}$  and H is connected to  $V_{DDIO}$  (2) stands for rising edge of signal

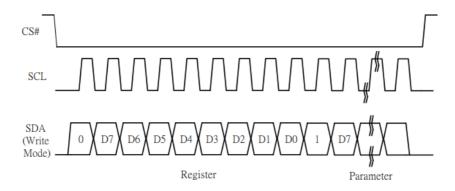



Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

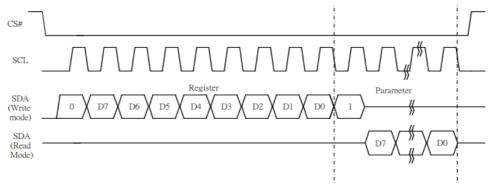



Figure 7-4: Read procedure in 3-wire SPI mode



## 7.3.2. Serial Peripheral Interface

#### Write mode

| Symbol             | Parameter                                                                    | Min | Тур | Max | Unit |
|--------------------|------------------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>SCL</sub>   | SCL frequency (Write Mode)                                                   | -   | -   | 20  | MHz  |
| tcssu              | Time CS# has to be low before the first rising edge of SCLK                  |     | -   | -   | ns   |
| tcshld             | Time CS# has to remain low after the last falling edge of SCLK               | 65  | -   | -   | ns   |
| tcsнigh            | Time CS# has to remain high between two transfers                            | 100 | -   | -   | ns   |
| tscLHIGH           | Part of the clock period where SCL has to remain high                        | 25  | -   | -   | ns   |
| tscllow            | Part of the clock period where SCL has to remain low                         | 25  | -   | -   | ns   |
| t <sub>sisu</sub>  | Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL | 10  | -   | -   | ns   |
| t <sub>SIHLD</sub> | Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL   | 40  | -   | -   | ns   |

#### Read mode

| Symbol             | Parameter                                                                | Min | Тур | Max | Unit |
|--------------------|--------------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>SCL</sub>   | SCL frequency (Read Mode)                                                | -   | -   | 2.5 | MHz  |
| tcssu              | Time CS# has to be low before the first rising edge of SCLK              |     |     | -   | ns   |
| tcshld             | Time CS# has to remain low after the last falling edge of SCLK           | 50  | -   | -   | ns   |
| tcsнigh            | Time CS# has to remain high between two transfers                        | 250 | -   | -   | ns   |
| tsclHigh           | Part of the clock period where SCL has to remain high                    | 180 | -   | -   | ns   |
| tscllow            | Part of the clock period where SCL has to remain low                     | 180 | -   | -   | ns   |
| t <sub>sosu</sub>  | Time SO(SDA Read Mode) will be stable before the next rising edge of SCL | -   | 50  | -   | ns   |
| t <sub>sohld</sub> | Time SO (SDA Read Mode) will remain stable after the falling edge of SCL | -   | 0   | -   | ns   |

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics

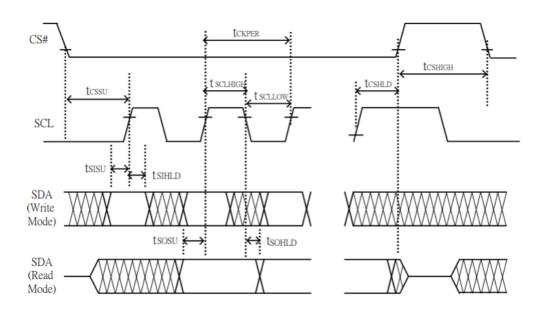
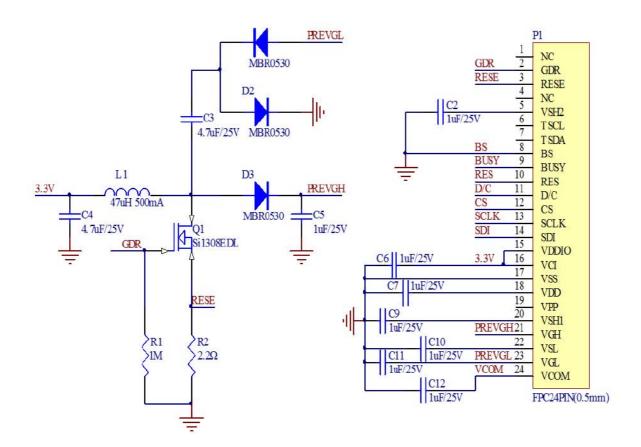
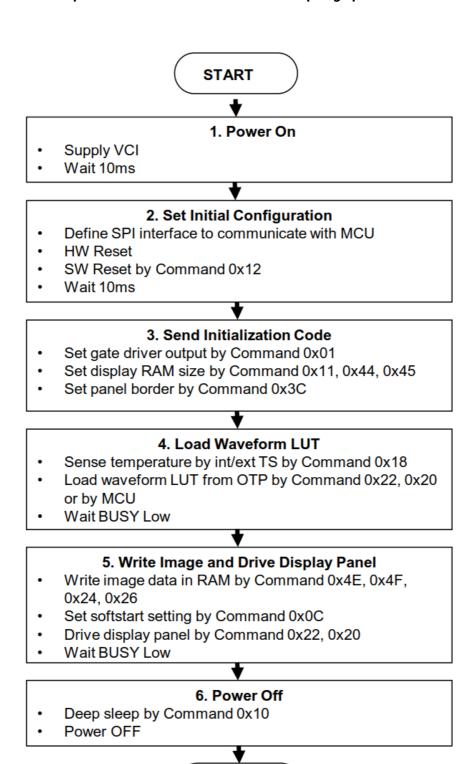




Figure 7-5: SPI timing diagram




### 7.3.3. Reference Circuit





### 8. Operation Flow and Code Sequence

### **8.1.** General operation flow to drive display panel



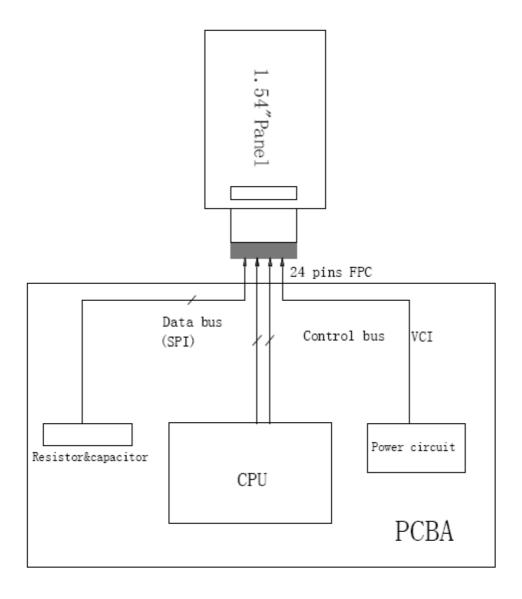
**END** 



# 9. Optical Specifications

### 9.1. Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified


| Symbol   | Parameter          | Conditions | Min | Тур.                   | Max | Units | Notes |
|----------|--------------------|------------|-----|------------------------|-----|-------|-------|
| R        | White Reflectivity | White      | 30  | 35                     | •   | %     | 9-1   |
| CR       | Contrast Ratio     | Indoor     | 8:1 |                        | •   |       | 9-2   |
| GN       | 2Grey Level        | -          |     | DS+(WS-DS)*n(m-1)      |     |       | 9-3   |
| T update | Image update time  | at 25 °C   |     | 12                     | -   | sec   |       |
| Life     |                    | Topr       |     | 1000000times or 5years |     |       |       |

#### Notes:

- 9-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 9-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 9-3. WS: White state, DS: Dark state



# 10. Block Diagram





### 11. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link:

https://www.good-display.com/product/53/



# 12. Reliability test

|   | TEST                                        | CONDITION                                                     | METHOD                                                                                                                                                                                                                                                                                                             | REMARK                                                                        |
|---|---------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1 | High-Temp<br>erature<br>Operation           | T =40℃,RH=35%<br>for 240 hrs                                  | When the experimental cycle finished, the EPD samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Bp. | When experiment finished, the EPD must meet electrical performance standards. |
| 2 | Low-Tempe<br>rature<br>Operation            | $T = 0^{\circ}C$ for 240 hrs                                  | When the experimental cycle finished, the EPD samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As EPDs return room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Ab.     | When experiment finished, the EPD must meet electrical performance standards. |
| 3 | High-Temp<br>erature<br>Storage             | T = +70 °C,<br>RH=35%<br>for 240 hrs<br>Test in white pattern | When the experimental cycle finished, the EPD samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Bp. | When experiment finished, the EPD must meet electrical performance standards. |
| 4 | Low-Tempe<br>rature<br>Storage              | T = -25°C for 240 hrs Test in white pattern                   | When the experimental cycle finished, the EPD samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Ab   | When experiment finished, the EPD must meet electrical performance standards. |
| 5 | High Temperatur e, High- Humidity Operation | T=+40°C,<br>RH=80%<br>for 240 hrs                             | When the experimental cycle finished, the EPD samples will be taken out from the environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-3CA.                  | When experiment finished, the EPD must meet electrical performance standards. |
| 6 | High Temperatur e, High- Humidity Storage   | T=+50°C,<br>RH=80%<br>for 240 hrs<br>Test in white pattern    | When the experimental cycle finished, the EPD samples will be taken out from the environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-3CA.                  | When experiment finished, the EPD must meet electrical performance standards. |



| 7  | Temperatur<br>e Cycle        | [-25°C 30mins]  →[Temperature rise 30mins]  [+70°C,RH=35% 30mins] →[Temperature drop 30mins], 1cycle=2hrs, 50 cycles Test in white pattern | <ol> <li>Samples are put in the Temp &amp; Humid. Environmental Chamber. Temperature cycle starts with -25°C, storage period 30 minutes. After 30 minutes, it needs 30min to let temperature rise to 60°C. After 30min, temperature will be adjusted to 60°C,RH=35% and storage period is 30 minutes. After 30 minutes, it needs 30min to let temperature rise to -25°C. One temperature cycle (2hrs) is complete.</li> <li>Temperature cycle repeats 50 times.</li> <li>When 50 cycles finished, the samples will be taken out from experiment chamber and set aside a few minutes. As EPDs return to room temperature, tests will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-14NB.</li> </ol> | When experiment finished, the EPD must meet electrical performance standards. |
|----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 8  | UV<br>exposure<br>Resistance | 765 W/m² for 168<br>hrs,40°C                                                                                                               | Standard# IEC 60 068-2-5 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| 9  | Electrostatic discharge      | Machine Model:<br>+/-250V, 0Ω, 200PF                                                                                                       | Standard# IEC61000-4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |
| 10 | Package<br>Vibration         | 1.04G,Frequency: 10~500Hz Direction: X, Y, Z Duration: 1 hours in each direction                                                           | Full packed for shipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |
| 11 | Package<br>Drop<br>Impact    | Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.                                    | Full packed for shipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |

Actual EMC level to be measured on customer application.

Note: (1) The protective film must be removed before temperature test.

- (2) There's temperature vs display quality limitation in our display module, we guarantee 1 pixel display quality from  $5^{\circ}\text{C} \sim 30^{\circ}\text{C}$ , and 2 pixel display quality for  $0^{\circ}\text{C} \sim 5^{\circ}\text{C}$  &  $30^{\circ}\text{C} \sim 40^{\circ}\text{C}$ .
- (3) In order to make sure the display module can provide the best display quality, the update should be made after putting the display module in stable temperature environment for 4 hours at  $25\,^{\circ}$ C.



#### 13. Point and line standard

#### **Shipment Inseption Standard**

Part-A: Active area Part-B: Border area

Temperature

Equipment: Electrical test fixture, Point gauge

Outline dimension:

31.8(H)  $\times$  37.32(V)  $\times$  1.0(D)

| Гіте  | Angle  |
|-------|--------|
| 5 Sec |        |
| art-A | Part-B |
| gnore |        |
| 2     | Ignore |

Unit: mm

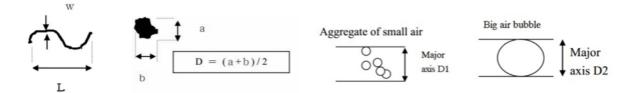
| Environment             | 23±2℃                                  | 55± 1200~<br>5%RH 1500Lux |                                       |         | 300 mm                                 | 35 Sec |        |  |  |
|-------------------------|----------------------------------------|---------------------------|---------------------------------------|---------|----------------------------------------|--------|--------|--|--|
| Name                    | Causes                                 | Spot size                 |                                       |         | Part-A                                 | Part-B |        |  |  |
|                         | B/W spot in glass or                   | D ≤ 0.15mm                |                                       |         | Ignore                                 |        |        |  |  |
| Spot                    | protection sheet,                      | 0.15mm < D ≤ 0.25mm       |                                       |         | 2                                      | Ignore |        |  |  |
|                         | foreign mat. Pin hole                  | 0.25mm < D                |                                       |         |                                        | 0      |        |  |  |
|                         | Scratch on glass or                    | Length                    |                                       |         | Width                                  | Part-A | Ignore |  |  |
| Countril on Ford Inform | Scratch on FPL or                      | L ≤1.0mm                  |                                       |         | W≤0.1 mm                               | Ignore |        |  |  |
| Scratch or line defect  | Particle is Protection                 | 1.0 mm < L≤ 2.5mm         |                                       | 0.1 n   | nm <w≤ 0.2mm<="" td=""><td>2</td></w≤> | 2      |        |  |  |
|                         | sheet.                                 | 2.5 mm < L                |                                       |         | 0.2mm < W                              | 0      | 0      |  |  |
|                         |                                        | D1, D2 ≤ 0.15 mm          |                                       |         | Ignore                                 |        |        |  |  |
| Air bubble              | Air bubble                             | 0.15 mm < D1,D2 ≤ 0.2mm   |                                       | 0.2mm   | 2                                      | Ignore |        |  |  |
|                         |                                        | 0.2mm < D1, D2            |                                       |         | 0                                      |        |        |  |  |
| Side Fragment           |                                        | V<2mm                     | × × × × × × × × × × × × × × × × × × × | D 8: 41 | imborio ak Imara                       |        |        |  |  |
|                         | X≤3mm, Y≤0.5mm & display is ok, Ignore |                           |                                       |         |                                        |        |        |  |  |

Humidity

Illuminance

Distance

Remarks: Spot define: That only can be seen under WS or DS defects.


Any defect which is visible under gray pattern or transition process but invisible under black and white is disregarded.

Here is definition of the "Spot" and "Scratch or line defect".

Spot: W > 1/4L Scratch or line defect: W ≤1/4L

Definition for L/W and D (major axis)

FPC bonding area pad doesn't allowed visual inspection.



Note: AQL = 0.4



### 14. Handling, Safety and Environmental Requirements

#### **WARNING**

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

#### **CAUTION**

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

# Data sheet status

### Limiting values

Product specification | The data sheet contains final product specifications.

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

### **Application information**

Where application information is given, it is advisory and dose not form part of the specification.

|      | Product Environmental certification |
|------|-------------------------------------|
| RoHS |                                     |



## 15. Packing

CUSTOMER'S APPROVED: PAGE: 1/1 PACKLING ORDER: 1) Putting 35 pcs Modules 2) Putting 12 pcs PET trays 3) the tray together with on each PET tray.And together with 1 empty tray on the adhesive tape cover a dedicated EPE film. top of PET tray. Insert in the ESD bag, add desiccant in the ESD bag. ESD bag 4) Putting into one outcarton 5) Packing finished Note:35 pcs in a tray, 12 trays in a out carton, so 35x12=420pcs/Outcarton Dimension (Out carton ): 394\*344\*138mm



### 16. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.