

BL8023K

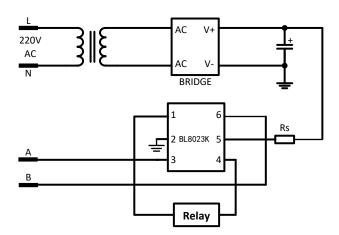
400mA Bi-Direction Relay Driver

DESCRIPTION

BL8023K is a bi-direction relay driver circuit, used to control the magnetic latching relay, with large output capability, ultra-low power consumption. It can be widely used in smart meters and other pulses, level control applications.

BL8023K can provide 400mA typical driving current, which will different according to the relay coil resistance. The input High Level Threshold of BL8023K is 2V; it can compatible with most single chip microcontroller.

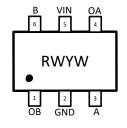
BL8023K is available in SOT-23-6 package.


FEATURES

- 5 to 40V input voltage range
- Low power consumption (I_Q<1uA)
- Input high level threshold: 2V, compatible with most single chip microcontroller
- Typical driving current: 400mA
 R_{DS(ON)}=70hm(VIN=12V, PMOSFET+NMOSFET)
 R_{DS(ON)}=70hm(VIN=30V, PMOSFET+NMOSFET)
- Peak driving current: 500mA@VIN=24V
- Environment temperature: -40°C~85°C
- SOT-23-6 package

APPLICATIONS

Smart Meter


TYPICAL APPLICATION

ORDERING INFORMATION

Part No.		Package	Tape & Reel	
	BL8023KCB6TR	SOT-23-6	3000/Reel	

PIN OUT & MARKING

SOT23-6

RW: Product Code YW: Date code

ABSOLUTE MAXIMUM RATING

Parameter			Value		
Supply voltage VIN			-0.3V - 40V		
Input pins			-0.3V - 40V		
Output pins			-0.3V - 40V		
Max operating junction temperature(T _J)			150°C		
Ambient temperature(T _A)			-40°C – 125°C		
Dackago thormal resistance	SOT23-6	ОЈА	190°C / W		
Package thermal resistance		Өлс	110°C / W		
Storage temperature(T _S)			-40°C - 150°C		
Lead temperature & time			260°C, 10S		

Note: Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMENDED WORK CONDITIONS

Parameter	Value
Input voltage range	Max.40V
Operating junction temperature(T _J)	-40°C –85°C

ELECTRICAL CHARACTERISTICS

(VIN=12V, T_A=25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIN	Input voltage range		5		40	V
lα	Quiescent current				1	uA
		Vin=12V, R _L =75ohm		7	10	ohm
R _{DS(ON)}	Switch R _{DS(ON)}	Vin=30V, R _L =75ohm		7	10	ohm
		Vin=12V, R _L =40ohm		7	10	ohm
V_{TH}	ON input high voltage	Vin=12V		2		V
R _{IN}	Equivalent input resistor			20		Kohm
V_{SD}	Fly-wheel diode forward voltage	Is=1A		1.4	1.5	V
T _R	Rise time	VIN=12V, R _L =75ohm		560		ns
T _{D(ON)}	Turn on delay time	VIN=12V, R _L =75ohm		1400		ns
T _F	Fall time	VIN=12V, R _L =75ohm		200		ns
T _{DIOFF)}	Turn off delay time	VIN=12V, R _L =75ohm		800		ns

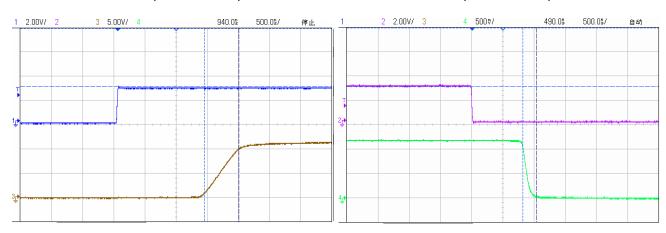
LOGIC FUNCTION TABLE

Input A	Input B	Output OA	Output OB	RELAY RESPONSE
1	0	1	0	ON
0	1	0	1	OFF
0	0	High-impedance	High-impedance	Hold
1	1	High-impedance	High-impedance	Hold

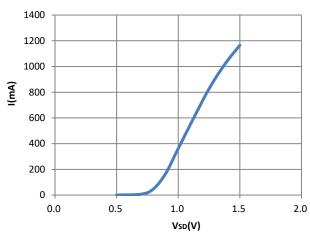
PIN DESCRIPTION

NAME	PIN#	DESCRIPTION
ОВ	1	Output B
GND	2	Ground.
Α	3	Input A
OA	4	Output A
VIN	5	Supply input voltage
В	6	Input B

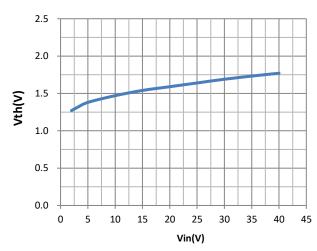
ELECTRICAL PERFORMANCE

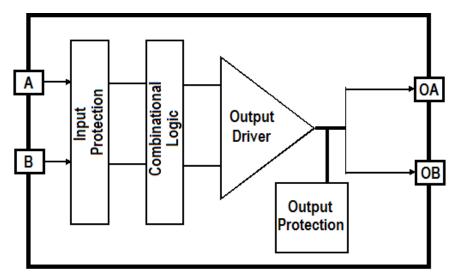

Tested under T_A =25°C, unless otherwise specified

Turn on delay and rise time


Ch1---Input Ch3---Output

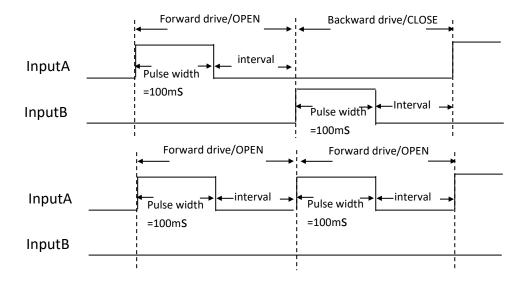
Turn off delay and fall time


Ch2---Input Ch4---Output



Vth vs. Vin

BLOCK DIAGRAM



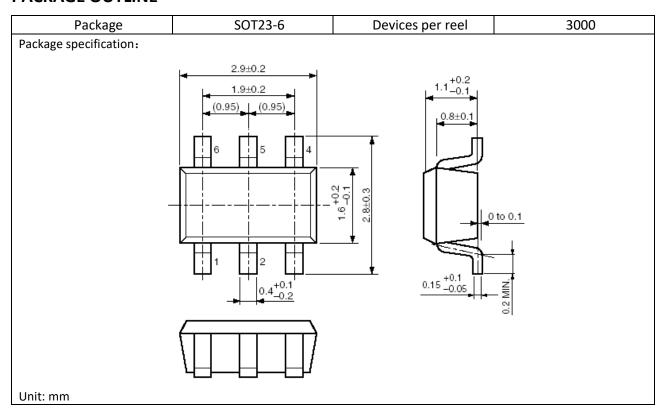
DETAILED DESCRIPTION


Pulse Triggering

If input is driven by square pulse, connect the inputs to the pulse source directly. Relay will operate as logic table stated (Vin should be less than the power supply voltage, Rs is current-limiting resistor, it can be ignored in the voltage is below 20V, i.e. Rs=0).

The recommended pulse width=100ms. The length of the intervals should be longer than 100ms. These intervals include: intervals between forward drive pulse and next backward drive pulse, intervals between forward drive pulse and next forward drive pulse, intervals between backward drive pulse and next forward drive pulse, intervals between backward drive pulse and next backward drive pulse.

4



Pulse triggering application diagram

Relay free-wheel

Relay from ON to OFF, the energy stored in the relay inductor released by the chip's internal body diode and the relay inductor. Until the end of the release of this energy, relay proceeding to the next operation.

PACKAGE OUTLINE

