

Version update instructions:

version	Change the	Modify content	Edited
number	time		by
V1.0	2014/01/22	create	HCJ
V1.01	2014/05/08	Add timing requirements for UART	HCJ
		communication	
		Add soft reset delay time	
		description	
	2014/07/25	Modify the description of the power	HCJ
		factor register, complement code	
		Modify part of the error description	
V1.02	2015/06/18	Modify VAOS, RMS_CREEP,	HCJ
		I_PKLVL,	
		V_PKLVL Description	
V1.1	2015/11/20	Version upgrade and modification	HCJ
V1.11	22 November 2015	Modify part of the error description	НСЈ

features

High precision, within the input dynamic working range (6000:1), the non-linear measurement error is less than 0.1%

HAL BELLING

©©⊡ ‰M signal stability, I b point C Foutput jump is less than 0.01 %

Image was seen as the active power in both positive and negative directions, and output fast output pulses (CF)

☆☆☆⌒⌒ chip has two current sampling terminals, sampling live wire and neutral wire current

☆☆☆☆ Chip gives the effective value of voltage and double current, and the measuring range

(20mA~12Ib)

\$#\$ Chip has a double anti-creep
design, ensuring that the

In the creep experiment of 1 hour, no more than 1 pulse

@ ☆ ☆ m _____ chip has the function of
voltage loss and phase failure detection

There is a power supply voltage monitoring circuit on the chip to detect power-off conditions

\$##™ chip has a built-in reference voltage source of 2.5V, and an external

2.5V voltage. There is a reference power-

down detection inside to prevent the fast

walk caused by the breakdown of the

external capacitor.

External crystal oscillator 3.58MHz

Chip single working power supply 5V, low power consumption 25mW (typical value)

BL6523GX is a UART interface chip, the communication rate is fixed at 4800bps

Related patent applications

BL6523GX 单相多功能电能计量芯片

overview

BL6523GX is a wide-range singlephase multi-function electronic energy metering chip, suitable for simple single-phase multi-function or single-phase power line carrier energy meter applications, with high cost performance.

BELLING

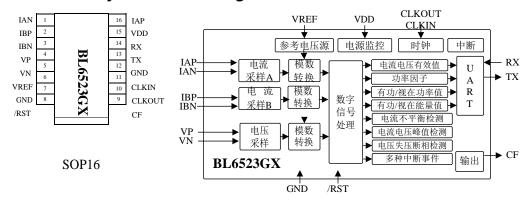
BL6523GX integrates 3-way highprecision Sigma-Delta

ADC, reference voltage, power management and other analog circuit modules, as well as digital signal processing circuits for processing electrical parameters such as active power, apparent power, and current and voltage RMS.

BL6523GX has two current sampling terminals, which respectively sample the current of live wire and neutral wire. When the difference between the two exceeds the set threshold, an indication signal is issued, indicating that there is electricity stealing or wrong wiring. It can realize dual-channel automatic monitoring according to the set threshold. switch.

BL6523GX can measure single-phase active energy, apparent energy, power

factor, current and voltage effective value, line frequency and other parameters; it has the function of voltage loss and overvoltage monitoring; current and voltage peak detection ; Functional energy meter needs.


BL6523GX 单相多功能电能计量芯片

BL6523GX has a patented anti-creep design, and with reasonable external hardware design, it can pass the 0.5mT external strong magnetic field interference test . In addition, in the latent experiment of more than 48 hours, it is ensured that no large at 1 pulse.

BL6523GX integrates a UART interface. To facilitate the transmission of metering parameters and meter calibration parameters with the external MCU . The communication interface is specially designed with high reliability. The BL6523GX can be reset through the soft reset function to ensure reliable measurement.

BL6523GX supports full digital domain offset compensation, gain adjustment , phase correction (up to $\pm 0.635^{\circ}$ adjustable) , etc. Active power calibration outputs fast pulse CF , which can be directly connected to the standard meter for error correction.

 $\mathsf{BL6523GX}$ complies with the new national grid standard.

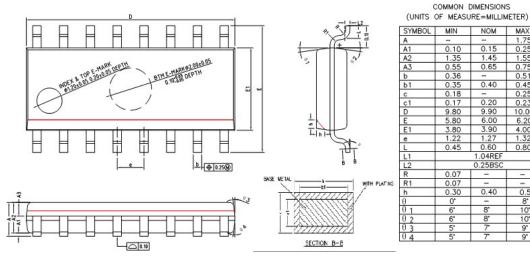
Pinout and System Block Diagram

上海贝岭股份有限公司 上海市宜山路 810 号 021-24261000

pin	definition symbol	illus				
numb	Symbol	trat				
er		e				
16,1	IAP ,	The analog input of the current channel, the maximum				
	IAN	differential voltage of the pins is $\pm 660 \text{mV}$, the gain can be				
		adjusted, see the register GAIN for details. Due to internal ESD				
		Protection circuit if voltage overvoltage within ±1.5V				
		, there will still not be too much damage.				
2, 3	IBP, IBN	The analog input of the current channel, the maximum				
		differential voltage of the pins $is\pm\!660mV,$ the gain can be				
		adjusted,				
		See register GAIN for details. Due to the internal ESD protection				
		circuit, if the voltage overvoltage is within $\pm 1.5V,$ there will				
		still not be too much damage.				
4, 5	VP, VN	The analog input of the voltage channel, the maximum				
		differential voltage of the pin is $\pm 660 \text{mV}$, see the register				
		for details				
6	VREF	GAIN .(Same as above, the maximum signal amplitude is $\pm 1.5V$) of the on-chip reference voltage is $2.5 \pm 8\%$, and the				
0	VKEF					
		typical value of the temperature coefficient is 5ppm/°X.				
		An external reference source can be connected to this pin.				
		Alternatively, this pin needs to be used				
7	GND	A luF ceramic capacitor eliminates coupling to ground. The internal analog circuit is referenced to ground. This pin				
/	GND	should be bound to the analog ground plane or the most stable				
		static ground in the system. This static ground is used in all analog circuits. In order to minimize the noise in the chip				
		ground signal, the static ground plane can only be Connect				
		digital horizon at one point noodle.				
8	/RST	Chip reset signal input, active low.				
8 9	CF	Calibration pulse output pin, this pin gives active power				
7		information, this output can be used to compare the meter, the				
		output frequency at full scale can be adjusted by WA_CFNUM.				
		When measuring low power, CF sets the pulse width to 90ms. When				
		measuring high power, the CF output cycle is less than 180ms				
		When, the pulse width of CF is half of the period.				
10	CLKOUT	The crystal oscillator can provide the clock for the chip				
10	CLIXOUT	through this pin and the CLKIN pin. When external				
		When clock and crystal oscillator are introduced, this pin				
		can drive a CMOS load.				

1. Pin definition (SOP16)

4		UIIIA BL6523GX 单相多功能电能计量芯片
11	CLKIN	The main clock of the internal analog circuit and digital


11	CLKIN	The main clock of the internal analog circuit and digital						
		processing circuit can introduce an external clock. Crystal can						
		be connected in parallel on CLKIN and CLKOUT Provide the						
		clock source for the chip, the clock frequency is $3.58 MHz$.						
		22pF and 33pF can be used in crystal oscillator circuits.						
12	GND	The internal analog circuit is referenced to ground.						
13	TX	The data output terminal of the serial interface.						
14	RX	Data input for the serial interface. RX pin multiplexing						
		/RST reset function						
15	VDD	Positive power supply (+5 V) provides analog part power supply						
		the power supply voltage should be kept at						
		Between +4.5V~5.5V.						

BL6523GX 单相多功能电能计量芯片

MA

2. Package size SOP16

3. limit range

 $(T = 25^{\circ} C)$

project	symbol	extremum	unit
Power supply voltage VDD	VDD	-0.3 ~ +7	V
Analog input voltage (relative to GND)	IAP, IBP, VP	-6 ~ +6	V
Digital Input Voltage (relative to GND)	RX	-0.3 ~ VDD+0.3	V
Digital Output Voltage (relative to DGND)	CF, TX	-0.3 ~ VDD+0.3	V
Operatin g temperat ure	Topr	-40 ~ +85	Ĉ
storage temperat ure	Tstr	-55 ~ +150	Ĉ
Power Dissipation (SSOP24)	Р	80	mW

4. Electrical parameters

(VDD = 5V, GND = 0V, on-chip reference voltage source, 3.58MHz crystal oscillator, 25 ° C)

Measurement items	symbol	Measurement conditions	Measur ing point	the small est	typi cal	maxi mum	unit
Active Power Measurement Error (absolute error)	WATT_err	6000:1 input dynamic range	CF		0.1	0.3	%

		BL652	?3 <i>GX</i>	, 单相多	功能电	3能计量	芯片
Active power measurement bounce (big signal)	Δlb _	Ib=5A input, test the average of 2 laps	CF		0.006	0.01	%
Active power measurement bounce (small signal)	Δ 0.02%Ib	0.02% Ib input, test 1 circle	CF		0.1	0.2	%
The phase angle between the channels causes Measurement error	PF08err	Phase lead 37 (PF=0.8)				0.5	%
(capacitive) The phase angle between the channels causes Measurement error (inductive)	PF05err	Phase lag 60 (PF=0.5)				0.5	%
AC Power Supply Rejection (Output output frequency amplitude change)	ACPSRR	IP/N=100mV			0.01		%

		BL652	3GX	, 单相多	动能	电能计量	副 志片
DC Power Supply Rejection (Output	DCPSRR	VP/N=100mV			0.1		%
output frequency amplitude change)							
Voltage RMS measurement Accuracy	VRMSerr	0.4%Ib~12Ib input DR			0.3		%
(relative error) Current RMS measurement Accuracy	IRM Serr	0.4%Ib~12Ib input DR			0.3		%
(relative error) Analog input level		Differential Input (Peak)				1200	mV
Analog input impedance	<u> </u>	(ICAK)			370		kΩ_
Analog input bandwidth		(-3dB)			14		kHz
Analog input gain error Difference		External 2.5V reference Voltage		-4		+4	%
Analog input phase increase benefit matching error		External 2.5V reference Voltage		-1.5		+1.5	%
Internal Voltage Reference	Vref		VREF		2.5		V
base deviation	Vreferr					± 200	mV
Temperature Coefficient	Temp Coef				5	15	ppm/ °C
logic input high		VDD=5V \pm 5%		2.6			V
Logic input low		VDD=5V \pm 5%				0.8	V
logic output high		VDD=5V \pm 5%		4			V
Logic output low level		VDD=5V \pm 5%				1	V
Power supply VDD	VDD			4.5		5.5	V
AIDD	IAVDD	VDD=5.25V			3		mA
DIDD 5 Working pr	IDVDD	VDD=5.25V			2		mA

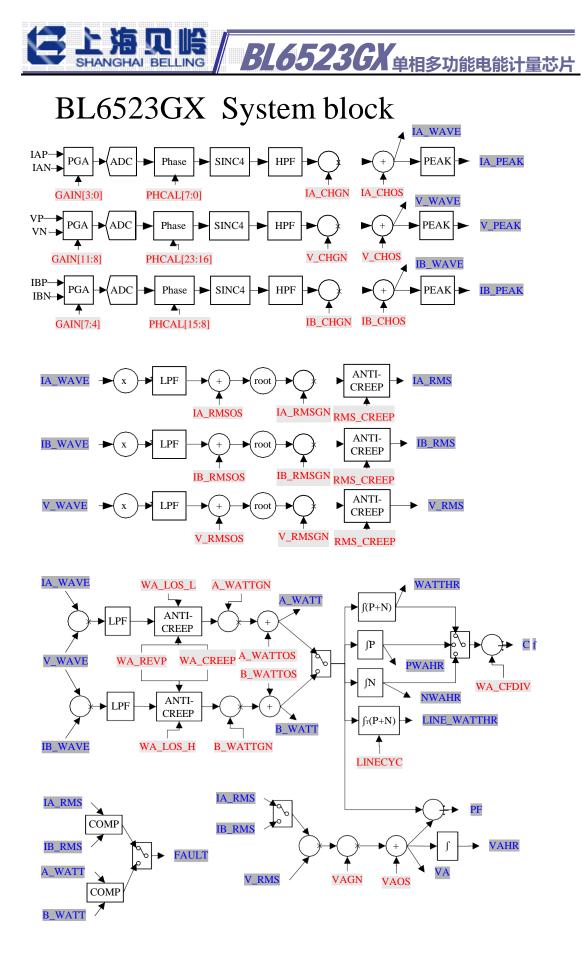
5. Working principle

BL6523GX 単相多功能电能计量芯片

5.1 System Block Diagram

The current signal and the voltage signal are respectively converted into analog by gain amplifier (PGA) and high-precision analog-to-digital conversion (ADC).

the high-frequency noise and DC offset are filtered out through the down-sampling filter (S INC 4 and high-pass filter (HPF) to obtain the required current waveform data and voltage waveform data.

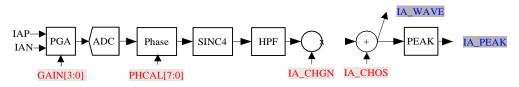

The instantaneous active power is obtained by multiplying the current waveform data and the voltage waveform data, and then passes through a low-pass filter (LPF1) the output average active power. Here the current channels are calculated separately A and current channel B average active power. Select one of the active power channels to obtain active energy through integration.

the voltage waveform data pass through the square circuit ($X^{\,2}$) the low-pass filter ($L\,PF$ and the root circuit respectively

(ROOT)get current effective value and voltage effective value respectively.

The product of the effective value of the current and the effective value of the voltage can obtain the apparent power, and the ratio of the active power to the apparent power is the power factor.

When the current RMS or active power of the A and B channels differ by a certain value, or the average active power of the A and B channels differ by a certain value, the FAULT signal is output to indicate the unbalanced state of the two phases.



上海贝岭股份有限公司 上海市宜山路 810 号 021-24261000 10 / 33

V1.11

5.2 Front-end waveform calculation

Front-end waveform calculation includes gain amplifier (PGA) high-precision analogto-digital conversion (ADC) has correction (PHASE) own-sampling filter (SINC4), high-pass filter (HPF) and channel gain adjustment modules to obtain the required current waveform data and voltage waveform data (IA_WAVE, IB_WAVE , V_WAVE) above pictured with A channel current example)

5.2.1 Front-end gain adjustment

of BL6523GX has a programmable gain amplifier PGA, whose optional gain can be adjusted in 7 stages. Gain selection can be realized by writing to the gain register (GAIN), and the default value of GAIN is 000H.

The gain registers each use 4 bits to select the PGA of the current channel or the voltage channel. The current A channel uses bits [3:0], the current B channel uses bits [7:4], and the voltage V channel uses bits [11:8].

Such as current A channel, use [3:0] bits to adjust.

x000 = 1 times x001 = 2 times x010=4 times x011=8 times x100=16 times x101=24 times x110=32 times x111 cannot be set

$5.2.2\ \mathrm{phase}\ \mathrm{compensation}$

BL6523GX provides a method to digitally calibrate the phase error between current and voltage channels. It compensates the phase error between channels caused by external PCB layout and wiring by introducing a digitally settable time delay in the current channel or voltage channel. This method is only suitable for small phase errors in the range of \pm 0.635°. Note that using time-shifting techniques to correct for large phase errors introduces significant phase errors in higher harmonics.

The phase calibration register (PHCAL) is a binary 24 -bit register, where [7:0] compensation current A channel, [15:8] compensation current B channel, [23:16] compensation voltage V channel, the default value is 000000H. The highest bit in every 8 bits is the enable bit. Take the current A channel as an example, when [7] = 0, the compensation is turned off; when [7] = 1, the compensation is valid. Use [5:0] bits to fine-tune the delay time,

1LSB corresponds to 1 delay, up to 63 delays, each delay 0.5587us. For a 50Hz input signal, the resolution of the corresponding minimum phase compensation is $0.01\,^\circ$, and the maximum adjustable $0.635\,^\circ$.

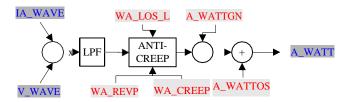
5.2.3 Input bias correction

 $B\ L\ 6523\ G\ X\ Also\ contains\ the\ input\ offset\ correction\ registers\ (\ IA_CHOS\,\ IB_CHOS\, V_CHOS\), these _____ The\ default\ value\ of\ the\ 16\ -bit\ register\ is\ 0000H\.$ They use the data in the form of 2 's complement to eliminate the deviation caused by the analog-to-digital conversion of the current A channel, the current B channel and the voltage V channel. The deviation here may be derived from the offset generated by the input and the analog-to-digital conversion circuit\ itself\ .\ Offset\ correction\ can\ make\ the\ input\ waveform\ offset\ close\ to\ 0\ under\ no-load\ conditions\ .

GHAI BELLING BL6523GX 单相多功能电能计量芯片

5.2.4 Channel Gain Correction

 $B \ L \ 6523 \ G \ X$ It also contains channel gain correction registers ($I \ A \ CHG \ N$, $I \ B \ CH \ G \ N$, $V \ CH \ G \ N$) which are 16-bit signed numbers, and the default value is 0000 H. They adjust the gain of the current A channel, current B channel and voltage $V \ channel \ with \ data \ in \ 2' \ s \ complement \ form \ , and the adjustable \ range \ is \ \pm \ 50\%$.


output WAVE =
$$WAVE \times (1 + \frac{CHGN}{2^{16}})$$

For example: write 7FFFH (hexadecimal)AA_CHGN , the output waveform amplitude increases by 50%, because 7FFFH

= 327 67 (decimal) 327 67 / 65535 = 0.5. _Similarly, write $80\,01\,H\,{\rm When}$, the amplitude of the output waveform decreases 50 % .

5.3 Active energy metering principle

The instantaneous active power is obtained by multiplying the current waveform data and the voltage waveform data, and then passes through a low-pass filter (LPF1) the output average active power. Here the current channels are calculated separately A and current channel B average active power. Select one of the active power channels to obtain active energy through integration. (The figure below takes channel A as an example)

5.3.1 Principle of active power calculation

Electric energy metering mainly multiplies the input voltage and current signals according to time to obtain the information of power changing with time. Assuming that the current and voltage signals are cosine functions and there is a phase difference Φ , the power is:

$$p(t) = V \cos(wt) \times I \cos(wt + \Phi)$$

Order $\Phi = 0$:

$$p(t) = \frac{VI}{2} (1 \Box \cos \sigma 2 (wt))$$

令Φ≠0时:

p(t) is called the instantaneous power signal, and the ideal p(t) only includes two parts: the DC part and the AC part with a frequency of 2ω . The former is also called instantaneous real power signal, and instantaneous real power is the primary object of electric energy meter measurement.

If the current and voltage signal is not a cosine function, the signal can be expanded into harmonics of the cosine function according to Fourier transform, and can also be calculated according to the above p(t)=v(t)*i(t), which will not be described in detail here.

5.3.2 Active power offset correction

Active power bias registers (A_WATTOS , B_WATTOS), yes 16 bit register, the default is 0000H. _ _ These registers start with 2 The two's complement representation of . A_WATTOS used to eliminate the adopted current A Deviation occurring in channel metered active power ; B_WATTOS used to eliminate the employed current B Deviations in the active power metered by the channel; the deviation here may be due to the PCB in the power calculation Crosstalk between two channels on the board and on the IC itself. Offset correction can bring the value in the active power register close to 0 at no load.

Active Power = ActivePower₀ + WATTOS (see register description for detailed formula)

5.3.3 Active Power Gain Adjustment

The gain of active power can be adjusted through the gain register (A_WATTGN , B_WATTGN) to adjust the range of the active power measured by the current A channel and the active power measured by the circuit B channel respectively. This register is a 16 -bit signed number, and the default value is to 0000H. The following formula shows how the active power gain register is used for gain adjustment:

output WG = Active Power ×
$$(1 \pm \frac{WG}{2})$$

For example: write 7FFFH (hexadecimal) iA_WATTGN, the power output will increase by 50%, because 7FFFH

= 32767 (decimal) 32767/65535 = 0.5. Similarly, write 8001H When the power output decreases 50%.

B_WATTGN is used in the same way.

5.3.4 Active power anti-creep

BL6523GX includes two anti-creep methods: power threshold anti-creep and time threshold anti-creep.

Anti-creep Threshold Register (WA_CREEP) for twenty four bit. register is divided into two parts, the low 12 bit WA_CREEP_L sets a power anti-creep threshold in the form of an unsigned number, and the default is 02BH. When the absolute value of the input active power signal is less than this threshold, the output active power is set to zero. This makes the output to the active power register a value of 0 at no load, even with a small noise signal.

$$WATT = \begin{cases} 0 & |WATT| < WA CREEP L \\ WATT & |WATT| > = WA CREEP L \end{cases}$$

Anti-creep Threshold Register (WA_CREEP), High 12 bit WA_CREEP_H Set a timer threshold in the form of unsigned number, the default is FFFH. There is a timer register TIME_CREEP inside, and whenever a CF pulse output is detected,

the register TIME_CREEP is set to the value of WA_CREEP_H . If no CF pulse output is detected , the value of the TIME_CREEP register will decrement. If there is still no CF signal output when the TIME_CREEP register is decremented to 0, the register TIME_CREEP will generate a clear signal to generate the internal energy accumulation register of the CF pulse . will be cleared. After clearing, the timer register TIME_CREEP still restores to the value of WA_CREEP_H , and starts counting again . WA_CREEP_H can be written or read by the user, the default value is FFFH, the resolution of this register is 4.6s/

LSB, so the maximum anti-creep time is about 5h06m. For example,

WA_CREEP_H=216H, the corresponding anti-creep time threshold is

40 minutes, if there is no CF output within 40 minutes, the CF energy accumulation register will be cleared, and there will be no CF output. The timing antisubmarine mode is turned on when MODE[6]=1, and closed when MODE[6]=0; the power threshold anti-submarine mode is always

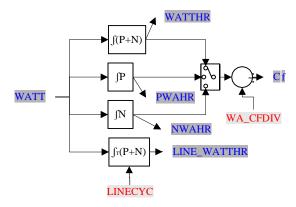
Work.

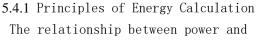
The timing anti-submarine method can be applied to the external strong magnetic field experiment of $0.5 \mathrm{mT}$. First, the external hardware circuit design should ensure that under the strong magnetic field interference, the chip input interference power is less than the chip's normal startup power, and the timing anti-submarine time is set to be greater than the normal startup time. And leave a certain margin, it can pass the $0.5 \mathrm{mT}$ external strong magnetic field experiment. It can also be applied to long-term anti-submarine, to ensure that no more than one pulse will occur in any length of submersion test.

5.3.5 Small Signal Compensation of Active Power

B L 6523 G X contains an active power small- signal compensation register (WA_LOS), the twenty four bit register with 2 's complement form of data to compensate the active power error when inputting a small signal. high 12 bit compensation B Phase power, where [23] is the sign bit, and the lower 12 bits compensate A Phase power, where [11] is the sign bit, and the default value is 000000H.

5.3.6 reverse indication threshold


B L 6523 G X contains a reverse indication threshold register (WA_REVP), the 12 The bit register sets a threshold in the form of an unsigned number. When the input active power signal is negative and the absolute value is greater than this threshold, the output reverse indication REVP. This register only affects STATUS[6] (REVP flag bit), and does not affect the sign bit of A_WATT and B_WATT registers. The /IRQ logic output becomes active low if the corresponding REVP enable bit in the interrupt mask register (MASK) is logic 1 (applicable to BL6523G)


The sign bit of the average power register or the real-time power sign bit can be selected by setting MODE[19] as

Reverse indication of STAUTS[6].

5.4 energy calculation

Active power can be obtained by integrating active energy.

energy can be expressed as:

$$Power = \frac{energy}{dt}$$

The reverse is :

$$Energy = \int Power \, dt$$

In BL6523GX, active energy is obtained by continuously accumulating active power signals in a 53 -bit internal register, and the active energy register WATTHR[23:0] takes

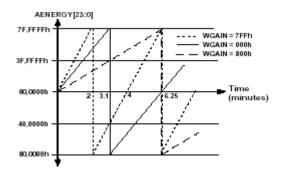
V1.11

out the upper 24 bits of this internal register as active energy output. Here the continuous accumulation of discrete signals is the same as the integration of continuous signals, namely:

$$E = \int p(t) dt = Lim_{T \to 0} \left\{ \sum P(nT) \times T \right\}$$

Here $n \; \text{is} \;$ the number of samples, $T \; \text{is} \;$ the sampling period, and the active power sampling period $T \; \text{is} \;$ 1.1us.

In this way, accumulating the power signal can also eliminate the unfiltered AC signal in the power signal. active power signal



The number is continuously accumulated in the internal active power register.

The power signal WATT enters the 55- bit internal integrator for superposition, and then writes the high 24 of the internal register into the active energy register (W ATTHR). When the input is full-scale, the register overflow time is about 10 minute. When the highest bit of the active energy register (WATTHR) is 1, a half-full indication APEHF is given, if the corresponding

1 in the APEHF enable bit causes the /IRQ logic output to become active low.

The figure below shows the accumulation of the active energy signal in the internal register at full scale of the analog input:

5.4.2 Calculation principle of line cycle energy

Similarly, B L 6523 G X Line Energy Register (LINE_WATTHR) at LINE CY C The register sets the line cycle accumulation time, 20mS/LSB. In the set n line periods, the power signal WATT enters the 32 -bit internal integrator for superimposition, and then the high value of the internal register twenty four Write to Line Cycle Energy Register (LINE_WATTHR). After that, the LINE_WATTHR register is refreshed every n line cycles.

Line cycle energy accumulation is mainly used for quick meter calibration.

5.4.3 Forward active energy calculation

The relationship between forward power and forward energy can be expressed as:

$$PWATT = \frac{d(PWAHR)}{dt}$$

The reverse is :

$$PWAHR = \int (PWATT) dt$$

In BL6523GX , the forward active energy is obtained by continuously accumulating the positive active power signal in a 49 -bit internal register, and the forward active energy register PWAHR [23:0] takes out the upper 24 bits of this internal

register as the positive Active energy output. Here the continuous accumulation of discrete signals is the same as the integration of continuous signals, namely:

$$E = \int p(t) dt = Lim_{T \to 0} \left\{ \sum_{n=0}^{T \to 0} \left\{$$

上海贝岭股份有限公司 上海市宜山路 810 号 021-24261000 V1.11

Here $n \; \text{is the number of samples, } T \; \text{is the sampling period, and the sampling period } T \; \text{in } BL6523GX \; \text{is 1.1us.}$

In this way, accumulating the power signal can also eliminate the unfiltered AC signal in the power signal. The positive power signal WATT enters the 49 -bit internal integrator for superposition, and then writes the high 24 of the internal register into the positive active energy register ($P \ W \ AH \ R$), and the register overflow time is about 10 minute.

5.4.4 Reverse active energy calculation

Similarly, the relationship between reverse power and reverse energy can be expressed as:

$$NWATT = \frac{d(NWAHR)}{dt}$$

The reverse is :

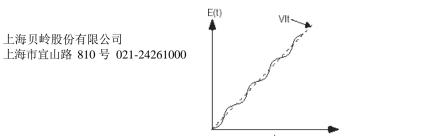
$NWAHR = \int NWATT dt$

In BL6523GX , the reverse active energy is obtained by continuously accumulating the reverse active power signal in a 49 -bit internal register, and the reverse active energy register NWAHR[23:0] takes out the upper 24 bits of this internal register as the reverse Active energy output.

BL6523GX 单相多功能电能计量芯片

The reverse power signal WATT enters the 49 -bit internal integrator for superposition, and then writes the high 24 of the internal register into the reverse active energy register ($WAHR_N$), and the register overflow time is about 10 minute.

5.4.5 frequency output


For calibration, BL6523GX also provides energy frequency conversion. In addition to the initial calibration of the manufacturer, end users also need to frequently calibrate the energy meter. For manufacturers, the most common method used for calibration is to generate a

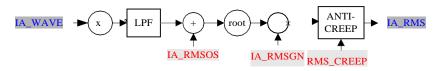
(energy) proportional to the pulse output. This pulse output can be connected to external calibration equipment through a simple, single-wire, optically isolated port .

 $B \ L \ 6523 \ G \ X$ You can choose to output active energy accumulation (WAT TH R) positive energy accumulation ($P \ WAHR$), negative energy accumulation ($N \ WA \ H \ R$), and then according to CF The coefficient provided by the scaling register ($W \ A \ CF \ D \ IV$) generates a CF pulse output through digital-to-frequency conversion, and CF needs a fixed pulse width of 90ms. Under the condition of stable load, the output frequency is proportional to the active power. When the AC input is full scale and WA_CFDIV=010H, the maximum output frequency is about 0.5kHz.

BL6523GX uses a register (WA_CFDIV) to set the frequency of CF. This 12 - bit unsigned register can adjust the CF frequency in a wide range, and the default value is 001H. When WA_CFDIV[x] is set to 1, its zoom ratio is ($2^{(x-4)}$)

Since the filter cannot be completely ideal, the signal after the low-pass and even after the DFC will contain the Sin(2wt) component. The figure below shows the energy change curve with time, and the dotted line is the ideal active energy curve. It is equal to $V \times I \times t$, and the actual energy curve is a real curve, because the average value of the sinusoidal signal is zero, so the sinusoidal ripple will not affect the

V1.11


accumulation of the energy signal. However, these sinusoidal ripples can be observed in the output frequency, especially at higher frequencies. The greater the load and the higher the frequency, the more pronounced this sinusoidal ripple will be. This is because the higher the frequency, the shorter the time for signal accumulation and averaging during energy frequency conversion, and the more obvious the sinusoidal change. Therefore, choosing a relatively low frequency output can greatly reduce the influence of the sinusoidal variation phenomenon, which is beneficial to pulse calibration. Also, the same effect can be obtained by averaging the output frequency with a longer clock gate time .

5.5 RMS calculation

the voltage waveform data pass through the square circuit ($X^{\,2}$) the low-pass filter ($L\,PF$ and the root circuit respectively

(ROOT) get current effective value and voltage effective value respectively.

5.5.1 RMS calculation principle

The effective value is also the root mean square of the signal ($Root \ M \ e \ an$ $Sq \ u \ a \ r \ e - \ RM \ S$) the root mean square of a continuous signal is calculated as follows:

$$V_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} V(t) dt}$$

For discrete digital signals, the formula becomes:

$$V_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} V^2(i)}$$

 $5.5.2\ \text{RMS}$ deviation correction

 $B\,L\,6523\,G\,X$ Contains RMS offset registers ($I\,A\,_\,RM\,S\,O\,S$, $I\,B\,_RM\,S\,O\,S$ and $V_RM\,S\,O\,S$) these $_$

The default value of the $16\mbox{-bit}\,register\,is\,0000H$. They use $2\mbox{'s complement}$ data to eliminate the current A channel, current

The deviation that occurs in the RMS calculation of the B channel and the voltage V channel. This deviation may come from input noise, since there is a squaring step in calculating the rms value, which may introduce a dc offset due to noise. Offset correction can make the value in the rms register close to 0 at no load.

The calibration method of the IRMSOS register in the channel is as follows, taking the current channel A as an example:

$$I_{ARMS} = \sqrt{I_{ARMS0}^2 + IA_RMSOS \times 2^{13}}$$

Here I_{ARMS0} It is the current RMS value before correction. The calibration method of the IB_RMSOS and V_RMSOS registers is the same as above.

5.5.3 RMS gain adjustment

The effective value gain can be adjusted through the effective value gain registers (IA_RMSGN , IB_RMSGN and V_RMSGN) to adjust the range of effective values. These registers are 16 -bit signed numbers, and their default value is 0000H., like the active power gain registers, they adjust the gain of the effective value of the current A channel, current B channel and voltage V channel respectively.

For example: write $7FFFH\ in\ V_RMSGN$, the effective value output of the voltage $V\ channel\ will\ increase$ by $50\ \%$ write

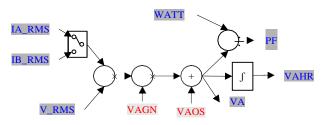
 8001H, the effective value output of the voltage V channel is reduced by 50%.

 上海贝岭股份有限公司
 23/33
 V1.11

 上海市宜山路 810 号 021-24261000
 100
 100

5.5.4 RMS measurement threshold

The effective value measurement threshold register RMS_CREEP can be set to limit the lower limit of the effective value measurement.


When the input effective value is less than this threshold (the value is automatically enlarged by 4 times), the output effective value is set to zero. This allows the output to the rms register to be 0 at no load, even with a small noisy signal.

 $\begin{cases} 0 & |RMS| < RMS_CREEP \times 2^{2} \\ RMS = \\ RMS, \end{cases}$

5.6 Apparent power and energy calculation

The product of the effective value of the current and the effective value of the voltage can obtain the apparent power, and the ratio of the active power to the apparent power is the power factor.

5.6.1 Apparent Power Calculation

The apparent power is obtained by multiplying the effective value of current and the effective value of voltage.

 $VA = I_RMS \times V_RMS _ _ _$

5.6.2 Apparent energy calculation

The apparent energy is obtained by integrating the apparent power, that is:

$VA_Energy = _ _ \int VA Power(t) dt$

In BL6523GX , the apparent energy is obtained by continuously accumulating the apparent power signal in a 49 -bit internal register, and the upper 24 bits of this internal register are stored in the apparent energy register VAHR[23:0]. Here the

continuous accumulation of discrete signals is the same as the integration of continuous signals, namely:

$$VA_En \ er \ g \ y = L \ im_{T \to 0} \left\{ \sum_{n=0} VA_Power__ \\ (n \ T) \times T \right\}$$

Here $n \; \text{is the number of samples, } T \; \text{is the sampling period, and the sampling period} \; T \; \text{in } BL6523GX \; \text{is } 1.1us \; .$

The apparent power signal is continuously accumulated into the internal register, where the accumulation is still a signed addition. The apparent energy register (VAHR) overflow time is about 10 minutes.

the highest bit of the apparent energy register (VAHR) is 1, a half-full indication VAPEHF is given, and if the corresponding VAPEHF enable bit in the interrupt mask register is logic 1, the /IRQ logic output becomes active low.

5.6.3 power factor

$$PF = \frac{WATT}{VA}$$

PF register is a signed number, then 24'h7FFFFF means power factor = 1, 24'h800000 means power factor = -1, 24'h400000 means power factor = 0.5.

 $PF = (\text{sign bit }) \times (PF[22] \times 2-1 - +PF[21] \times 2-2 - +PF[20] \times 2-3 - + ... + PF[1] \times 2-22 - +PF[0] \times 2^{-23})$

5.6.4 Apparent Power Offset Correction

Apparent Power Offset Register (VA OS), is 16 bit register, the default is 000 0 H , with 2 The two's complement representation of . VAOS is used to eliminate the bias in the calculation of apparent power. Offset correction can bring the value in the apparent power register close to 0 at no load.

$$VA = VA_0 + VAOS$$

5.6.5 Apparent Power Gain Adjustment

The gain of apparent power can be adjusted through the gain register VAGN to adjust the range of active power. The following formula shows how the apparent power gain register is used for gain adjustment:

output
$$VA = VA \times (1 + \frac{VAGN}{2^{16}})$$

5.7 Working mode selection

$5.7.1\ {\rm Power\ selection\ for\ energy\ accumulation}$

BL6523GX adopts dual current sampling and measures two-phase power at the same time. By default, the power of phase A is used for energy accumulation, and the output is CF. The MODE[0] of the working mode register (MODE) can be written by the user. When MODE[0] = 0, the power of phase A is used for measurement; when MODE[0] = 1, the power of phase B is used for measurement.

The MODE[1] of the working mode register (MODE) can be written by the user. When MODE[1] = 0, when the unbalance of the two channels A and B is detected, the switching will not be performed automatically. At this time, the user writes the MODE The value of [0] determines whether to measure by channel A or channel B; when MODE[1] = 1, when it detects that the two channels of A and B are unbalanced, it will automatically switch, and the channel with the larger value will be used as the measurement channel, the imbalance judgment threshold is set by MODE[11:10]. For details, see Chapter 5.7.4 "Unbalance Judgment".

5.7.2 High-pass filter use selection

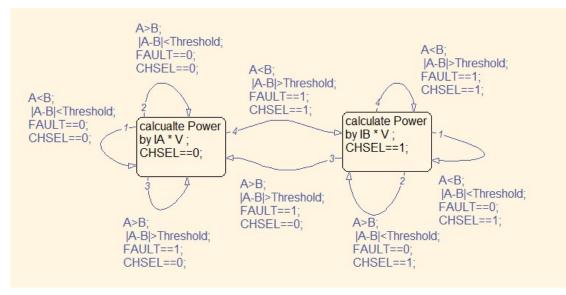
After the analog-to-digital conversion circuit of BL6523GX, there are high-pass filters in the current and voltage channels to eliminate offset. The MODE[4 : 2] of the working mode register (MODE) can be input by the user, and the default is 0, which means high-pass filter is used. The high-pass filter needs to be turned on when measuring AC signals.

When MODE[2] = 0, the current of channel A passes through the high-pass filter; when MODE[2] = 1, the current of channel A does not pass through the high-pass filter. Similarly, when MODE[3] = 0, the current of channel B passes through the high-pass filter; when MODE[3]

= 1, the current of channel B does not pass through the high-pass filter. Similarly, when MODE[4] = 0, the voltage passes through the high-pass filter; 上海贝岭股份有限公司 15/33 V1.11 上海市宜山路 810 号 021-24261000 when MODE[4] = 1, the voltage does not pass through the high-pass filter.

5.7.3 Energy accumulation mode selection

The MODE[9: 8] of the working mode register (MODE) can be written by the user, and the default is 2'b00, which means that the energy accumulation mode adopts absolute value accumulation, and at this time the CF output corresponds to the energy accumulated by the absolute value. When MODE[9: 8] = 2'b01, it means accumulating positive work, at this time CF outputs the energy corresponding to the accumulated positive work. When MODE[9: 8] = 2'b10, it means that the energy accumulation mode adopts algebraic sum accumulation, and at this time CF outputs the energy corresponding to algebraic sum accumulation. MODE[9: 8] = 2'b11, which means accumulating negative work, at this time CF output corresponds to the accumulating negative work, at this time CF output corresponds to the accumulated energy of negative work.


5.7.4 unbalanced judgment

 $B\;L\;6523\;G\;X$ The package can set the imbalance comparison threshold. Operating <code>Mcegister</code> (<code>MODE</code>) of the M O DE [11:

10] can be written by the user, the default is 2'b00, which means that the unbalanced judgment threshold is 12.5%, when the difference between the effective value of the sampling current of the live line and the neutral line or the difference between the two-phase power exceeds the set threshold, and output the wrong electricity indication signal FAULT. The /IRQ logic output goes active low if the corresponding FAULT enable bit in the interrupt mask register (MASK) is logic 1. When MODE[11:10]=2'b11, it means the threshold = 10.1%; when MODE[11:10]=2'b10, it means the threshold = 3.125%; when MODE[11:10]=2'b01, it means the threshold = 6.25%; when MODE[11:10]=2'b00, it means the threshold value = 12.5%.

The specific switching process is as follows:

5.7.5 Channel imbalance detection mode selection

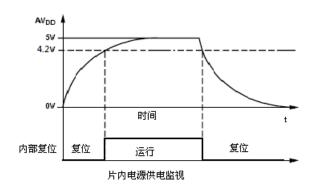
The MODE[5] of the working mode register (MODE) is the channel unbalance detection mode selection, the default is 1'b0, use the current RMS value of A and B channels to compare the unbalanced state of power consumption; when it is 1, use A phase Power and B -phase power to compare the unbalanced state of power consumption; in the two comparison methods, the comparison threshold and channel switching method are the same

5.7.6 Anti-creep mode selection

The MODE[6] of the working mode register (MODE) is the anti-creep mode selection, the default is 1'b0, and the power threshold comparison method is used to prevent creep; when it is 1, the timing anti-creep mode is turned on;

5.8 Electrical parameter monitoring

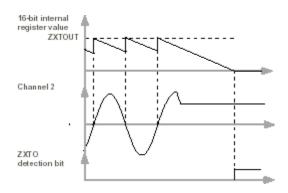
5.8.1 Power Supply Monitoring


 $B \, L \, 6523 \, G \, X$ contains an on-chip power monitoring circuit capable of continuous detection of analog power (AVDD) If the supply voltage is less than

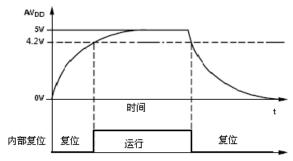
17 / 33

 $4.2\,V\pm\,5\,\%$, then $B\,L\,652\,3\,G\,X$ is not activated (does not work) that is, when the supply voltage is less than $4.\,At\,2\,V$, the chip is in reset state. This practice ensures that the device maintains correct operation when the power supply is turned on and off. The power monitoring circuit has a hysteresis and filtering mechanism that can largely eliminate false triggers due to noise. Generally, the decoupling part of the power supply should ensure that the ripple on AVDD does not exceed $5V\pm5\%$.

5.8.2 Zero-crossing detection

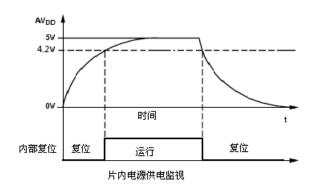

BL6523GX has a zero-crossing detection circuit in the voltage channel, when the voltage crosses zero from negative to positive, it outputs a zero-crossing signal ZX. A valid interrupt request /IRQ is output if the corresponding ZX bit in the interrupt mask register (<code>MASK</code>) is also set to logic 1. Interrupts are only generated from negative to positive zero crossings.

5.8.3 zero timeout


The zero-crossing detection circuit is also connected to a register ZXTOUT that detects the timeout of the zero-crossing signal. Whenever the detection voltage channel has a zero-crossing signal, ZXTOUT is set to the initial value. If there is no zero-crossing signal, it will be decremented. If there is no zero-crossing signal output for a long time, the value in this register will become 0. At this time, the corresponding bit ZXTO in the interrupt status register is set to 1. If the interrupt mask register When the corresponding enable bit ZXTO in is also 1, the zero-crossing signal timeout event will also be reflected on the interrupt pin /IRQ. Regardless of whether the corresponding enable bit in the interrupt register is set to active 1 when the ZXTOUT register is decremented to 0.

The zero-crossing timeout register ZXTOUT can be written or read by the user, and the initial value is FFFFH. The resolution of this register is 70.5us/LSB, so the maximum delay time of an interrupt is limited to 4.369s.

The figure below shows the mechanism for detecting zero-crossing timeout when the line voltage is always a fixed DC signal:



5.8.4 Line voltage drop detection 片内电源供电监视

BL6523GX can be programmed to indicate that when the effective value of the line voltage is lower than a certain peak value for more than a certain number of half cycles, it will give a line voltage drop indication.

As shown in the figure above, when the effective value of the voltage is less than the threshold set in the drop voltage threshold register (SAGLVL) and the drop time exceeds the set time in the drop line cycle register (SAGCYC) (shown as exceeding the sixth half cycle,

 $S\ AG\ C\ Y\ C\ [\ 7\ :\ 0\]=0\ 6\ H$), the line voltage drop event is set by setting the interrupt status register $S\ A\ G$ flag to record . The /IRQ logic output becomes active low if the corresponding SAG enable bit in the interrupt mask register (MASK) is logic 1.

The drop voltage threshold register (SAGLVL) can be written or read by the user, the initial value is FFFH. The drop line cycle register (SAGCYC) can also be written or read by the user, and the initial value is FFH. The resolution of this register is 10ms/

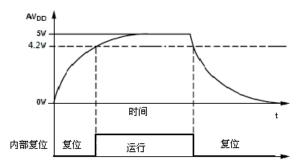
LSB, the maximum delay time of such an interrupt is limited to 2.55s.

5.8.5 peak detection

BL6523GX can record the maximum absolute value of the current channel and the voltage channel, which are stored in the current A transient peak register ($IA _ P E A K$), current B transient peak register ($IB_P E A K$) and voltage transient peak register ($V_P E A K$). These three registers are 24 -bit unsigned numbers. Refresh frequency 100Hz.

5.8.6 Current and voltage overload monitoring

 $BL6523GX\ \text{can}$ be programmed to set the threshold value of the current and voltage RMS, by the peak threshold register


($I_PKLVL\,,~V_PKLVL\,)$ setting.

When the current RMS value of channel A is greater than the threshold set by the current peak threshold (I_PKLVL), the current overload indication PKIA is given, and if the corresponding PKIA enable bit in the interrupt mask register (MASK) is logic 1, the /IRQ logic output becomes active low.

Similarly, when the current RMS value of channel B is greater than the threshold set by the current peak threshold (I_PKLVL), the current overload indication PKIB is given, and if the corresponding PKIB enable bit in the interrupt mask register (MASK) is logic 1, then /IRQ logic output goes active low.

Similarly, when the voltage RMS is greater than the threshold set by the voltage peak threshold (V_PKLVL), a voltage overload indication PKV is given,

and if the corresponding PKV enable^均的电源带电路视 interrupt mask register (MASK) is logic 1, the /IRQ logic output output becomes active low.

Note: /IRQ logic output is only applicable to BL6523G.

5.9 to interrupt

are indicated by the Interrupt Status Register (STATUS).

the interrupt status register $(\ensuremath{\textbf{STATUS}})$ are automatically cleared after a read operation,

5.10 Serial communication interface <code>UART</code> (<code>BL6523GX</code>)

 $BL6523GX\ adopts\ UART\ communication\ mode.$ The UART interface only needs two low-speed optocouplers to realize isolated communication.

4800bps work. All communication is initiated by $MCU\ sending\ commands$ to BL6523GX .

 $BL6523GX \ {\rm works}$ in slave mode, half-duplex communication.

UART port settings: communication baud rate 4800bps, no parity, stop bit 1;

format per byte

By te Start B D0 D1 D2 D3 D4 D5 D6 D7 Stop B

t1=t3=208uS; t2=208*8=1664uS.

The operation flow of reading register data is as follows:

 $0x35 \; \text{is the frame identification byte of the read operation};$

Addr is the internal register address of BL6523GX corresponding to the read operation ; The SUM byte is (Addr+Data_L+Data_M+Data_H) &0xFF inversion;

The operation flow of writing register data is as follows:

 $0xCA \; \text{is the frame identification byte of the write operation;}$

Addr is the internal register address of $BL6523GX\ corresponding$ to the write operation ;

	illustrate	Min	type	Max	unit
t1	Interval time between MCU sending bytes	0		20	М
t2	Interframe time	0.5			u
t3	the MCU sending the register address during the read operation until BL6523GX sends bytes		72		u
t4	Interval time between bytes sent by BL6523GX		116		u

The SUM byte is (Addr+Data_L+Data_M+Data_H) &0xFF inversion;

UART interface parameters:

Communication baud rate: $4800bps \pm 10\%$

UART interface:

UART of BL6523D The communication provides a timeout protection mechanism. If the

interval between bytes exceeds 22.68mS, the UART The interface resets automatically.

If the frame identification byte $0x35/0xCA\,\textsc{is}$ wrong or the SUM byte is wrong, the frame data is discarded.

 $UART\,\text{module}$ reset: $RX\,\text{pin}$ is pulled high after the low level exceeds $6.52mS\,,$ and the $UART\,\text{module}$ is reset.

5.11 reset function

5.11.1 RST pin reset

V1.11

The RST pin is pulled down for more than $32uS\,,$ and the chip is reset after being pulled up for $300uS\,;$

 $5.11.2\:RX\:\text{Pin}$ multiplexing reset

The $RX\;\text{pin}$ detects a continuous $20mS\;\text{low}$ level, and the chip resets after $RX\;\text{is}$ pulled high for $300uS\;\text{;}$

5.11.3 command reset

300uS to reset the chip after writing the soft reset command ; see soft reset setting <code>SOFT_NRST</code> for details ;

SHANGHAI BELLING BL6523GX 单相多功能电能计量芯片

6.Register

6.1 register list

	egister list		in the second	h 14		
add	na	exter		bit	defaul	desc
ress	me	nal	nal	nu	t	ribe
1033	inc	read	read	mb	value	The second
		/	/	er		
		write	write			
			Ele	ectric	al param	neter
			re	giste	r (inter	rnal
				W	rite)	
01H	IA_WAVE	R	W	tw	0	Current $\mathbf A$ waveform register,
				en		complement code, refresh rate
				ty fo		14KHz
				ur		
02H	IB_WAVE	R	W	tw	0	Current B Waveform Register,
				en	Ť	Complement Code, Refresh Rate
				ty		14KHz
				fo		
0.011	X / XX / X / D			ur		
03H	V_WAVE	R	W	tw	0	Voltage V waveform register,
				en ty		complement code, refresh rate
				fo		14KHz
				ur		
04H	LINE_	R	W	tw	0	Line Cycle Accumulated Active
	WATTHR			en		Energy Register
				ty		
				fo ur		
05H	IA_RMS	R	W	tw	0	Current A RMS register, refresh
0011				en	Ŭ	rate 2.5Hz
				ty		
				fo		
0.011			117	ur	0	
06H	IB_RMS	R	W	tw en	0	Current B RMS register, refresh
				en ty		rate 2.5Hz
				fo		
				ur		
07H	V_RMS	R	W	tw	0	Voltage \mathbf{V} RMS register, refresh
				en		rate 2.5Hz
				ty fo		
				fo ur		
08H	PF	R	W	tw	0	Power factor register, refresh
0011		IX.	**	en	U	rate 2.5Hz
				ty		
				fo		
				ur		

Ĺ	SHANGHAI			BLA	552.	3GX 单相多功能电能计量芯片
09H	FREQ	R	W	tw	0	Line Voltage Frequency / Period
				en ty		Register
				fo		
				ur		
0AH	A_WATT	R	W	tw	0	current A channel metering
				en ty		device, complementary code,
				fo		refresh rate 2.5Hz
ODU	.		** /	ur	-	
0BH	VA	R	W	tw en	0	Average apparent power register, refresh rate 2.5Hz
				ty		
				fo		
0CH	WATTID	р	W	ur	0	
UCH	WATTHR	R	W	tw en	0	active energy register
				ty		
				fo		
0DH	VAHR	R	W	ur tw	0	Apparent Energy Register
UDII	VAIIK	K	vv	en	0	Apparent Energy Register
				ty		
				fo ur		
0EH	PWAHR	R	W	tw	0	positive energy register
0LII		, in the second		en	Ŭ	positive energy register
				ty		
				fo ur		
0FH	NWAHR	R	W	tw	0	Negative energy register
				en		
				ty fo		
				ur		
10H	IA_PEAK	R	W	tw	0	Current A Transient Peak
				en		Register, Refresh Rate
				ty fo		100Hz
				ur		
11H	IB_PEAK	R	W	tw	0	Current B transient peak
				en tv		register, refresh rate 100Hz
				ty fo		
				ur		
12H	V_PEAK	R	W	tw	0	Voltage V Transient Peak
				en ty		Register, Refresh Rate
				fo		100Hz
				ur		
13H	B_WATT	R	W	tw	0	current B channel metering
				en ty		device, complementary code,
				fo		refresh rate 2.5Hz

그 거칠 보낸 비중	DIZEDDAV
SHANGHAI BELLING	BL6523GX 单相多功能电能计量芯片

				ur			
		(Calibra	tion	register	(external write, except 3AH)	
14H	MODE	R/W	R	tw	000000	Working mode register, see	
				en	h	"Working Mode Selection" for	
				ty		details	
				fo ur		select" instructions	
15H	GAIN	R/W	R	12	000H	Gain register, see "Front-end	
						Gain Adjustment" for details	
						illustrate	
16H	FAULTLVL	R/W	R	12	044H	current or two-phase power	
						imbalance mask threshold register	
						(internal multiplier 2^8)	
						compare the selected valid values	
						or power comparison, the value of	
						this register is different,	

						Need to reset;		
17H	WA_CREEP	R/W	R/W	tw en ty fo ur	FFF02 BH	The lower 12 bits are the anti- creep power threshold register (Internal times 2^4, the value is equal to 20ppm, the maximum FFF equal 0.2 %) The upper 12 bits are the anti-creep time threshold register, which is an unsigned number;		
18H	WA_REVP	R/W	R	12	087H	reverse indication threshold register (internal times 2^8, the value is equal to 0.1 %, the maximum FFFOO is equal to 3 %)		
19H	WA_CFDIV	R/W	R	12	001H	Active CF Scaling Register		
1AH	A_WATTOS	R/W	R	16	0	A channel active power offset calibration register, complement code		
1BH	B_WATTOS	R/W	R	16	0	B channel active power offset calibration register, complement code		
1CH	A_WATTGN	R/W	R	16	0	A channel active power gain adjustment register, complement code		
1DH	B_WATTGN	R/W	R	16	0	B channel active power gain adjustment register, complement code		
1EH	FREQ_SEL	R/W	R	16	4924H	Analog circuit frequency control register. Customers do not need use.		
1FH	BG_CTRL	R/W	R	tw en ty on e	00FA3 h	Analog circuit control register.		
20H	P HC A L (contains IA_PHCAL , IB_PHCAL , V_PHCAL)	R/W	R	tw en ty fo ur	0	Channel phase correction registers: 1. The lower 8 bits [7:0] are the current A channel phase correction register IA_PHCAL 2. The middle 8 bits [15:8] are the current B channel phase correction register IB_PHCAL 3. The uper 8 bits [23:16] are the voltage V channel phase calibration		

		In	
	. Je		
SHA	NGH/	V BEL	LING

Positive register V PHCAL R/W 0 Apparent Power Offset Calibration 21H VAOS R 16 Register, Two's Complement R/W 22H VAGN R 16 0 Apparent power gain adjustment register, two's complement 23H IA_RMSGN R/W R 16 0 Current A RMS gain trim register, two's complement, 16 0 Current **B** RMS gain trim register, 24H IB_RMSGN R/W R two's complement, 25H R/W 0 Voltage V RMS gain trim register, V_RMSGN R 16 two's complement, 26H IA RMSOS R/W R 0 Current A RMS offset correction 16 register, two's complement, internal *4; 27H IB RMSOS R/W R 0 Current B RMS offset correction 16 register, two's complement, internal *4; 0 Voltage V RMS offset correction 28H V RMSOS R/W R 16 register, two's complement, internal *4; 0 29H RMS CREEP R/W R RMS small signal threshold 12 register, internal *4; 2AH WA_LOS R/W 0 Active small signal compensation R tw en register; ty fo ur

BL6523GX单相多功能电能计量芯片

SHANGHAI BELLING BL6523GX 单相多功能电能计量芯片

-		-						
						Higher 12 bits compensate B phase, complement code;		
						Low 12bits compensate phase A,		
abu		D /IV		1.6	0	complement code;		
2BH	IA_CHOS	R/W	R	16	0	Current A channel bias adjustment register, two's complement		
2CH	IB_CHOS	R/W	R	16	0	Current B channel bias adjustment register, two's complement		
2DH	V_CHOS	R/W	R	16	0	Voltage V channel bias adjustment register, two's complement		
2511	IA CHCN	D/W	R	16	0			
2EH	IA_CHGN	R/W	ĸ	16	0	Current A channel gain adjustment register, complement code		
2FH	IB_CHGN	R/W	R	16	0	Current B channel gain adjustment register, two's complement		
30H	V_CHGN	R/W	R	16	0	Voltage V channel gain adjustment		
5011	v_enorv	10 11	K	10	0	register, two's complement		
31H	LINECYC	R/W	R	12	000H	Line energy accumulation cycle		
0111	2012010	10			00011	number register		
32H	ZXTOUT	R/W	R	16	FFFFH	Zero-Crossing Timeout Register		
33H	SAGCYC	R/W	R	8	FFH	Drop Line Period Register		
34H	SAGLVL	R/W	R	12	0	Dropout Voltage Threshold		
						Register		
35H	Reversed	R/W	R	twe	0	reserve		
				nty				
2011		DAV	D	four	BBBBB	1. 12 D. (
36H	I_PKLVL	R/W	R	twe nty	FFFFF	low 12 Bits [11:0] are current A, B peak threshold;		
				four	FH	*		
						The upper 12 bits [23:12] are reserved		
37H	V_PKLVL	R/W	R	12	FFFH	Voltage V Peak Threshold Register		
38H	AT_SEL	R/W	R	16	0	Output selection register, see		
					-	"Output selection register" for		
						details		
						"Register" Description		
39H	MASK	R/W	R	16	0	Interrupt mask register, see		
						"Interrupt mask register" for		
						details		
						"Register" Description		
3AH	STATUS	R	W	16	0	Interrupt status register, see		
						"Interrupt Status Register" for		
						details		
						"Register" Description		
	1	1			l regist			
3BH	READ	R	R	twe	0	Read data register. record the		
				nty four		last read		
				ioui		data		

BL6523GX 单相多功能电能计量芯片

3CH	WRITE	R	R	twe	0	Write data register. record the		
				nty		last written		
				four		data		
3DH	CHKSUM	R	R	twe	015AB	Check register. For all writable		
				nty	AH	calibration registers		
				four		The numerical sum of		
3EH	WRPROT	R/W	R	8	0	Write-protect setup register.		
						When writing $55H$, the table		
						Indicates that write operations		
						to writable registers are		
						allowed.		
3FH	SOFT_NRST	R/W	R	twe	0	When the input is 5A5A5AH, the		
				nty		system resets.		
				four				

6.2 Instantaneous register description

Waveform registers (IA_WAVE, IB_WAVE, V_WAVE)

electric	c current A W	Vave registe	er	Туре	: read-	Default	value:
(IA_WAV	/E)	Ad	ddr: 01H	only		000000H	
Bit23	Bit22	Bit21	20.	3	Bit2	Bit1	Bit0
sign bit	IA_WAVE22	IA_WAVE21	IA_WA	VE203	IA_WAVE2	IA_WAVE1	IA_WAVE0

electric	c current B W	Vave registe	r	Туре	: read-	Default	value:
(IB_WAVE) Addr : 02H				only		000000H	
Bit23	Bit22	Bit21	20.	3	Bit2	Bit1	Bit0
sign bit	IB_WAVE22	IB_WAVE21	IB_WA	VE203	IB_WAVE2	IB_WAVE1	IB_WAVE0

Voltag	Voltage waveform register (V_WAVE) Addr: 03H				: read-	Default value: 000000H		
Bit23	Bit22	Bit21	20	3	Bit2	Bit1	Bit0	
sign bit	V_WAVE22	V_WAVE21	V_WA	VE203	V_WAVE2	V_WAVE1	V_WAVE0	

Notice:

The effective number of bits of the waveform register is $24\ \text{bits},\ Bit[23]$ is the sign bit, and the refresh rate is $14KHz\,.$

Line Cycle Accumulated Active Energy Register (LINE_WATTHR)

register (LINE_WATTHR) only	000000H
Addr: 04H	
Bit23 Bit22 Bit21 203 Bit2	Bit1 Bit0
L_AHR23 L_AHR22 L_AHR21 L_AHR203 L_AHR2 I	L_AHR1 L_AHR0

Notice:

This register accumulates (LINECYC + 1) \times 0.02 second active power, and refreshes every (LINECYC + 1) \times 0.02 second . Using the line cycle cumulative active energy mode can greatly simplify energy calibration and significantly reduce the time required to calibrate the meter. The accumulation time is set by the LINECYC register.

RMS registers (IA_RMS , IB_RMS , V_RMS)

electric	current A e	ffective va	lue	Туре	: read-	Default	value:
register	(IA_RMS)	А	ddr: 05H	only		000000H	
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0
RMS23	RMS22	RMS21	RMS	203	RMS2	RMS1	RMS0

electric	current B E	ffective val	lue	Туре	: read-	Default	value:		
register	(IB_RMS)	A	ddr: 06H	r: 06H only			000000H		
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0		
RMS23	RMS22	RMS21	RMS203		RMS2	RMS1	RMS0		

Voltage effective value register				Type: read-		Default value:	
(V_RMS	5)	Add	r:07H only		000000H		
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0
RMS23	RMS22	RMS21	RMS	203	RMS2	RMS1	RMS0

Notice:

The RMS register is a $24\,\text{-bit}$ unsigned number, and the register refresh rate is $2.5Hz\,.$ Power Factor Register ($PF\,)$

	Power factor register (PF) Addr: 08H		Type: read- only		Default value: 000000H		
Bit23	Bit22	Bit21	20.	3	Bit2	Bit1	Bit0
PF23	PF22	PF21	PF20	03	PF2	PF1	PF0

Note: $\ensuremath{\text{PF23}}$ is the sign bit, complement code

```
If PF23=0,
```

```
        If PF23=1,((~)(~)(~)

        上海贝岭股份有限公司
        32/33

        上海市宜山路 810 号 021-24261000
        32/33
```


Line Free	Line Frequency / Period Register (FREQ)							
Line V	oltage /Free	quency Perio	odizer	Туре	: read-	Default	value:	
(FREQ		Addı	: 09H	only		000000H		
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0	
PF23	PF22	PF21	PF2	03	PF2	PF1	PF0	

Note: In the case of crystal oscillator $3.579545 \rm MHz$, the measured frequency can also use the empirical formula: f

 $=\frac{87.3906*fosc}{32*FREQ}$

fosc is crystal oscillator frequency;

Average active power registers (A_WATT, B_WATT)

Curre	nt A Channe	l Metering		Type: read-		Default value:	
	(A_WATT)	Addr: 0AH		only		000000H	
Bit23	Bit22	Bit21	20.	203		Bit1	Bit0
sign bit	WATT22	WATT21	WAT	Г203	WATT2	WATT1	WATT0

Curre	nt B Channel	Metering		Type: read-		Default value:	
	(B_WATT)	$Addr:\ 13H$		only		000000H	
Bit23	Bit22	Bit21	20.	203		Bit1	Bit0
sign bit	WATT22	WATT21	WAT	Г203	WATT2	WATT1	WATT0

Note: The average active power register is in 24-bit binary complement format, the highest bit is the sign bit, and the refresh rate is 2.5Hz. Its sign bit reflects the sign of the average power within 400mS.

Suppose the data in the average active power register is

WATTO is used to calculate the _ AP for: if WATTO<2^23,

AP=WATT0;

If WATT0>=2^23, AP = WATT0-2^24;

Assuming that the displayed active power is P and the conversion factor is Kp (when Kp is the rated active power input, the ratio of WATT0 reading to rated power), then:

P=AP/Kp;

Average Apparent Power Register (VA)

Avera	ige apparent	power regis	ster (VA Type	: read-	Default	value:
) Addr : 0BH only 000000H						
Bit23	Bit22	Bit21	203	Bit2	Bit1	Bit0
VA23	VA22	VA21	VA203	VA2	VA1	VA0

Note: VA outputs the apparent power of the current metering channel according to the metering channel selected by the user; the coefficient when the apparent power is displayed is the same as the conversion coefficient Kp of active power. Energy registers (WATTHR, VAHR, PWAHR, NWAHR)

Active	e energy reg	ister (WA'	TTHR)	Type: read-		Default value:	
Addr: 0CH				only		000000H	
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0
WTTHR23	WATTHR22	WATTHR21	WATTHR203		WATTHR2	WATTHR1	WATTHR0

Appar	Apparent energy register (VAHR) Addr: 0DH		Type: read- only		Default value: 000000H		
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0
VAHR23	VAHR 22	VAHR21	VAHR203		VAHR2	VAHR1	VAHR0

Positive active energ	gy register	Type: read-	Default value:
(PWAHR) Addr :	only	000000H
0EH			
上海贝岭股份有限公司	34 / 3	3	V1.11

8,			BL65230	X 单相多	功能电能	计量芯片
Bit23	Bit22	Bit21	203	Bit2	Bit1	Bit0
PWAHR23	PWAHR22	PWAHR21	PWAHR203	PWAHR2	PWAHR1	PWAHR0

Negativ	ve active er	nergy regist	Type: read-		Default value:		
(NWAHR) Addr : 0FH			only		000000H		
Bit23	Bit22	Bit21	20.	3	Bit2	Bit1	Bit0
NWAHR23	NWAHR22	NWAHR21	NWAH	R203	NWAHR2	NWAHR1	NWAHR0

Note: The energy register is not cleared after reading by default. The energy register can be set to be cleared after reading through the MODE register.

Transient Peak Registers (IA_PEAK, IB_PEAK, V_PEAK)

electri	ic currentA	Transient H	Peak	Туре	: read-	Default	value:	
Register (IA_PEAK) Addr:			only		000000H			
10H								
Bit23	Bit22	Bit21	20.	3	Bit2	Bit1	Bit0	
PEAK23	PEAK22	PEAK21	PEAK	203	PEAK2	PEAK1	PEAK0	

electric current B Transient Peak Register (IB_PEAK) Addr: 11H				: read-	Default 000000H		
Bit23	Bit22	Bit21	20.	3	Bit2	Bit1	Bit0
PEAK23	PEAK22	PEAK21	PEAK	203	PEAK2	PEAK1	PEAK0

Voltage 1	Peak Regis	ter	Туре	read-	Default	value:	
(V_PEAK) Ad		Addr :	only		000000H		
12H							
Bit23	Bit22	Bit21	203		Bit2	Bit1	Bit0
PEAK23 F	PEAK22	PEAK21	PEAK	203	PEAK2	PEAK1	PEAK0

Note: The refresh rate of the transient peak register is $100 Hz\,.$

6.3 Calibration register

Operating Mode Register (MODE)

Workin	Working mode register (MODE) Addr: 14H			Type: read and write		Default value: 000000H	
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

	Defau lts	describe
WATT_SEL	0	Energy accumulation and CF output selection, the default is A-phase power, which is 1 When selecting B-phase power accumulation
AUTO_SEL	0	<pre>When MODE[1] = 0, when it is detected that there is an unbalanced power consumption between phase A and phase B, it will not switch automatically. MODE[0] determines whether to measure by phase A or phase B; when MODE[1] = 1, when A is detected Phase, B When there is an unbalanced power consumption between the phases, it will be switched automatically, and the one with the largest</pre>
	_	_

	= 片

			measurement.
2	A_HPF_SEL	0	A aisle HPF select, use by default HPF, for 1
			time bypass HPF
3	B_HPF_SEL	0	B channel HPF selection, HPF is used by default, HPF is
			bypassed when it is 1
4	V_HPF_SEL	0	VaisleHPF select, use by defaultHPF, for 1
			time bypass HPF
5	COMP_SEL	0	Channel unbalance detection mode, the default is
			0, use the current effective value of channel A and
			${\bf B}$ to compare the unbalanced state of power
			consumption; when it is 1 , use the power of
			phase A and phase B to compare the unbalanced state
			of power consumption;
			In the two comparison methods, the
			comparison threshold and channel switching
			methods are the same
6	ANTICREEP_SEL	0	Anti-creep mode selection, the default is
			0 , use the power threshold comparison
			method
			Type anti-submarine movement; when it is 1,
			turn on the timing anti-submarine mode;
7	SPI_MODE	0	reserve,
8,9	CF_ADD_SEL	00	CF power accumulation method selection;

			<pre>Mode[9:8]=00; select CF output power absolute value energy;</pre>
			Mode[9:8]=01; Select CF to output positive
			energy;
			<pre>Mode[9:8]=10; Select CF output power algebra and energy;</pre>
			Mode[9:8]=11; Select CF to output negative
			energy;
10, 11	FAULT_SEL	00	Two-phase unbalance comparison threshold
			setting , when the difference between the
			effective value of the sampling current of
			the live line and the neutral line or the
			difference between the active power of the A
			phase and the B phase exceeds the set
			threshold, the wrong power consumption
			indication signal is output
			FAULT
			Mode[11:10]=00; The judgment threshold for
			imbalance is 12.5%
			Mode[11:10]=01; The unbalanced judgment
			threshold is 6.25%;
			Mode[11:10]=10; The unbalanced judgment
			threshold is 3.125 %;
			Mode[11:10]=11; The unbalanced judgment
10 12		00	threshold is 10.16%;
12, 13		00	reserve
14,15	SPI_SEL	00	reserve
16	RMS_SETUP	0	RMS power-on stabilization time selection, the default is 400ms; it is 1 hour,
			Power-on stabilization time is 1.6 seconds;
17	CF_DISABLE	0	CF shutdown selection, the default is 0, CF
			works normally; when it is 1,
			The CF output is turned off, and the energy
			register stops accumulating;
18	LOS_ADJ	0	reserve
19	REVP_SEL	0	Reverse indication selection, when it is 0 ,
			select the sign bit of the 2.5Hz power
			register as the reverse indication,
			WA_CREEP is valid; when it is 1 , select
			the real-time power sign bit as the reverse
			indication, REVP_CREEP
			Valid; only affects STATUS[6] flags;

SHANGHAI BELLING DLOOLOU/ 单相多功能电能计量芯片

20	ENG_REG_CLR	0	set to 1, all energy registers are
			automatically cleared after a read operation
			Zero; when set to 0 , all energy registers will not be
			automatically cleared after the read
			operation , but will only continue to
			accumulate automatically;
twenty	WATTHR_SEL	0	Active energy register accumulation method
one			selection, choose 0 as default,
			Number and accumulation; when 1 is selected,
			it is absolute value accumulation;
23~22	Reversed	0	reserve

Gain Register ($\operatorname{GAIN})$

Gain register (GAIN) Addr: 15H		Type: rea write	ad and	Default value: 000H
Bit11 [~] 8	Bi	t7 ~ 4		Bit3 ~ 0
Voltage channel PGA gain selection	Current B channel PGA gain selection		n Current A channel PGA gain selection	

Take A channel PGA gain selection as an example, use [3:0] bits to adjust:

- X000 1 Multiplier
- X001 2 Multiplier
- X010 4 Multiplier
- X011 8 Multiplier
- X100 16 Multiplier
- X101 24 Multiplier
- X110 32 Multiplier

会 上海 Q 崎 SHANGHAI BELLING BL6523GX 单相多功能电能计量芯片

X111 cannot be set

Unbalance Mask Threshold Register (FAULTLVL)

Unbalance shielding thres	Type: rea	ad and	Default value:	
(FAULTLVL)	Addr: 16H	write		044H
Bit11 [~] 8	Bi	t7 $^{\sim}$		Bit3 ~
		4	0	

It is used to set the threshold of whether the Fault detection function works when the dual-channel is unbalanced; the dual-channel unbalanced judgment can be based on the effective value or power comparison (set in the working mode MODE register)

FAULTLVL=RMS_Reg/256 or FAULTLVL=WATT_Reg/256

Anti-Creep Power Threshold Register (WA_CREEP)

Anti-creep power threshold (WA_CREEP)	Type: read and Default: FFF02BH	
Addr: 17H	write	
Bit23~12	Bit11~0	
Anti-creep time threshold WA_CREEP_H		
	WA_CREEP_L	

Bit11 \sim 0 are used to set the anti-creep active power threshold. When the instantaneous active power is lower than the anti-creep power threshold, the instantaneous active power is cut to 0 and does not participate in active energy accumulation. Correspondence between setting value and average active power register: WA_CREEP_L=WATT_Reg/(2*1.3655)

 $Bit23 \ ^\sim 12$ are used to set the anti-creep time threshold, $1LSB{=}4.6$ seconds, need to enable timing anti-creep in the working mode register MODE setting.

Reverse Indication Threshold Register (WA_REVP)

Reverse indication thres	Type: rea	ad and	Default value:	
(WA_REVP) Addr : 18H	write		087H
Bit11 [~] 8	Bit	:7 [~]		Bit3 \sim
		4	0	

12 Bit unsigned number, when the input active power signal is negative and the absolute value is less than this threshold, REVP in the interrupt status register The indication bit is not refreshed, and is set to 0, so that under no-load conditions, even if there is a small noise signal, REVP interrupt will not be generated. Correspondence between setting value and average active power register: $WA_REVP=WATT_Reg/(32*1.3655)$

Active CF Scaling Register (WA_CFDIV)

meritorious service CF Zoo	Type: rea	ad and	Default value:	
(WA_CFDIV)	Addr: 19H	write		001H
Bit11 [~] 8	Bit	:7 [~]		Bit3 ~
	2	4	0	

Adjust the output frequency of CF.

Current voltage channel $\pm 660 \text{mV}$ peak-to-peak (467mV rms) input						
WA_CFDIV	CF frequency	active	IA_RMS	V_RMS		
	(Hz) power					
1 (0x01)	1.95	6500000	5650000	5650000		

会 SHANGHAI BELLING / BL6523GX 単相多功能电能计量芯片

2 (0x02)	3.91		
4 (0x04)	7.81		
8 (0x08)	15.63		
16 (0x10)	31.25		
32 (0x20)	62.50		
64 (0x40)	125.00		
128 (0x80)	250.00		
256 (0x100)	500.00		

Active Power Offset Calibration Registers (A_WATTOS, B_WATTOS)

A channel active power offset calibration (A_WATTOS)		Type: read and write	Default value: 0000H
Addr: 1AH			
Bit15 (sign Bit14 ~ 8		Bit7 \sim	Bit3 $^{\sim}$
bit)		4	0

calibratio	tive power offset on (B_WATTOS) dr: 1BH	Type: read and write	Default value: 0000H
Bit15(sign	Bit14 ~ 8	Bit7 ~	Bit3 ~

Complement code, used to adjust the active power deviation in the case of small signal;

For example, in the case of a small signal, the data of the active power register X_WATT is WATT_Data, and the active power error is Err, then the value of the active power offset calibration register is:

int(WATT_Data*(-Err)/1.3655)*8 if Err<0;

int(WATT_Data*(-Err)/1.3655)*8+65536 if Err>=0;

active power gain adjustment register

(A_WATTGN, B_WATTGN)

(A_'	power gain adjustmen WATTGN) dr: 1CH	t Type: read and write	Default value: 0000H
Bit15(sign bit)	Bit14 ~ 8	Bit7 $^{\sim}$ 4	Bit3 ~ 0

(B_'	power gain adjustmer WATTGN) dr: 1DH	t Type: read and write	Default value: 0000H
Bit15(sign bit)	Bit14 ~ 8	Bit7 \sim 4	Bit3 ~ 0

Complement code, used to adjust the scaling ratio of active power, the adjustment range is \pm 50%

WATT_Reg = Active Power
$$\times (1 + \frac{X_WATTWG}{2^{16}})^{--}$$

BG_CTRL register (BG_CTRL)

Analog circuit control (BG_CTRL)		Type: read and	Default value:
Addr: 1FH		write	0FA3H
Bit21 ~ 16	Bit15 ~ 8	Bit7 \sim	Bit3 \sim
			0

Bit[21:16]

Bit[15:0]

Phase Correction Register (PHCAL)

Phas 20H	e correcti	on (PHCAL)) Addr :	Type: write	read and	Default 000000H	
enable		Adjust					
bit		bit					
D7	D6	D5	D4	D3	D2	D1	DO
Current A channel phase							
	correction						
上海贝岭股位	份有限公司		42 / 3	33			V1.11

上海市宜山路 810 号 021-24261000

SHANGHAL B	ELING 51.002.55 单相多功能电能计量芯片
	一日の日本の日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本

enable bit		Adjust bit					
D15	D14	D13	D12	D11	D10	D9	D8
		С	urrent B c	hannel phas	se		
			corre	ection			
enable				Adjust			
bit				bit			
D23	D22	D22 D21 D20 D19 D18 D17 D16					
	Voltage Channel Phase						
	Correction						

The principle of phase compensation is to introduce a small time delay into the signal processing circuit to compensate for small phase errors;

 $D7\,is$ the enable bit. When =1, phase compensation is turned on, and when =0, phase compensation is turned off;

D5...D0 is the delay or advance time , 0.5587us/1LSB . The corresponding resolution is 0.01 , the maximum adquotable 10 .635 . Tested under 100% Un , standard current Ib 0.5L , measured error Err,

$$\theta \approx \arcsin(\frac{|Err|}{1.732})$$

register value = (int(θ / 0 . 0 1) + 1 2 7 ; int It is a rounding operation; (It is recommended to round off the decimal part to improve the adjustment accuracy)

If Err is positive, change the phase

of the current channel; if Err is

negative, change the phase of the

voltage channel;

Apparent Power Offset Calibration Register (VA_OS)

Apparent Power	Offset Calibration	Type: read and	Default value:
(VAOS)	Addr: 21H	write	0000H
Bit15 (sign	Bit14 ~ 8	Bit7 $^{\sim}$	Bit3 \sim
bit)		4	0

It is a 16-bit register, the default value is 0000H, expressed in 2's complement form. VAOS is used to eliminate the bias in the calculation of apparent power. Offset correction can bring the value in the apparent power register close to 0 at no load.

$$VA = VA_0 + VAOS * 1.3655/8$$

Apparent power gain adjustment register (VAGN)

Apparent power	gain adjustment	Type: read and	Default value:
(VAGN)	Addr: 22H	write	0000H
Bit15 (sign	Bit14 ~ 8	Bit7 $^{\sim}$	Bit3 \sim
bit)		4	0

16-bit signed number, the default value is 0000H. The gain of apparent power is adjusted with the data in 2's complement form, and the adjustable range is \pm 50 % .

output
$$VA = VA \times (1 + \frac{VAGN}{2^{16}})$$

RMS gain adjustment registers (IA_RMSGN, IB_RMSGN, V_RMSGN)

(IA	IS Gain Adjustment _RMSGN) ldr: 23H	Type: read and write	Default value: 0000H
Bit15(sign	$Bit14 \sim 8$	Bit7 ~	Bit3 ~
bit)		4	0

(IB	S gain adjustment _ RMSGN) dr: 24H	Type: read and write	Default value: 0000H
Bit15(sign bit)	Bit14 ~ 8	Bit7 \sim 4	Bit3 \sim 0

Voltage RMS gain	adjustment (V_RMSG Addr	· · · ·	Default value: 0000H
	25H		
Bit15(sign	Bit14 ~ 8	Bit7 $^{\sim}$	Bit3 \sim
bit)		4	0

 $16\,\text{-bit}$ signed number, its default value is $0000H\,.$, respectively adjust the current A channel and the current B channel with the data in the form of 2 's complement

channel and the rms gain of the voltage Vchannel. $output RMS = X_RMSGN$

0
 2^{16})

RMS Offset Correction Registers (IA_RMSOS, IB_RMSOS, V_RMSOS)

Current A RMS Offset Correction (IA_RMSOS)		Type: read and write	Default value: 0000H
Ad	ldr : 26H		
Bit15 (sign	Bit14 ~ 8	Bit7 $^{\sim}$	Bit3 \sim
bit)		4	0

Current B RMS Offset Correction (IB_RMSOS)		Type: read and write	Default value: 0000H
Ad	ldr: 27H		
Bit15(sign	Bit14 ~ 8	Bit7 $^{\sim}$	Bit3 \sim
bit)		4	0

Voltage RMS (V_RMSOS)	offset correction Addr	Type: read and write	Default value: 0000H
	28H		
Bit15(sign	Bit14 ~ 8	Bit7 \sim	Bit3 \sim
bit)		4	0

16 -bit registers. They use the data in the form of 2 's complement to eliminate the deviation in the effective value calculation of the current A channel, the current B channel and the voltage V channel respectively. This deviation may come from input noise, since there is a squaring step in calculating the rms value , which may introduce a dc offset due to noise. Offset correction can make the value in the rms register close to 0 at no load .

$$I_{ARMS} = \sqrt{I_{ARMS0}^2 + IA_RMSOS \times 2^{13}}$$

RMS Small Signal Threshold Register (RMS_CREEP)

RMS small signal	threshold (RMS_CREE) Addr	• •	Default value: 000H
	29H		
Bit11	Bit10 ~ 8	Bit7 \sim	Bit3 $^{\sim}$
		4	0

If the effective value is smaller than the setting value of the effective value small signal threshold register, the RMS register value is $0\;;$

Correspondence between RMS_CREEP register and X_RMS register

$$RMS = \begin{cases} 0 & RMS \square RMS _ CREEP / (1.3655 * 2) \\ PM\Sigma, & RMS \ge RMS _ CREEP / (1.3655 * 2) \end{cases}$$

Active Small Signal Compensation Register (WA_LOS)

Active small si	gnal compensation	Type: read and	Default value:
(WA_LOS)	Addr: 2AH	write	0000H
Bit23 (sign	$Bit22 \sim 12$	Bitl1(sign bit)	$Bit10 \sim 0$
bit)		A channel	
B channel active power		active power	

24 -bit register compensates the active power error when inputting small signals with data in 2's complement form. High 12 bits compensate B channel power, low 12 bits compensate A channel power

Active Power = ActivePower $_{0}$ + WATTOS*1.3655

Channel Offset Adjustment Registers (IA_CHOS, IB_CHOS, V_CHOS) reserve

Channel gain adjustment registers (IA_CHGN, IB_CHGN, V_CHGN)

electric curr adjustment (IA_0	cent A Channel gain CHGN) Addr	Type: read and write	Default value: 0000H
	2EH		
Bit15(sign	Bit14 ~ 8	Bit7 \sim	Bit3 \sim
bit)		4	0

electric current B Channel gain adjustment (IB_CHGN) Addr: 2FH		Type: read and write	Default value: 0000H
Bit15(sign bit)	Bit14 ~ 8	Bit7 $^{\sim}$ 4	Bit3 \sim 0

Voltage channel	gain adjustment	Type: read and	Default value:
(V_CHGN)	Addr: 30	H write	0000H
Bit15 (sign	Bit14 ~ 8	Bit7 $^{\sim}$	Bit3 \sim
bit)		4	0

16-bit signed number, the default value is 0000H. They adjust the gain of the current A channel, current B channel and voltage V channel with data in 2's complement form , and the adjustable range is \pm 50%.

output
$$WAVE = WAVE \times (1 + \frac{X_CHGN}{2})^{--}$$

For example: write 7FFFH (<code>hexadecimal</code>) IA_CHGN , the output waveform amplitude increases by 50%, because 7FFFH

= 327 67 (decimal), 327 67 / 65535 = 0.5 . _Similarly, write 80 01 H When , the amplitude of the output waveform decreases 50 % .

Line cycle accumulation cycle number register (LINECYC)

Line cycle accumulation cycle number			Type: read and	Default value:		
(LINECYC) Addr: 31H			write	000H		
D11	D10	D9	D8…D2		D1	DO

Set the cumulative time of line cycle cumulative active energy register ($LINE_WATTHR\ 04H$). $1LSB{=}20mS$;

Cumulative cycle time =($L\ I\ NE\ CYC\ +\ 1\)*\ 0.02$ seconds, line cycle accumulated active energy register ($L\ I\ NE\ WAT\ T\ H\ R\ 0\ 4\ H\)$ Refresh every (LINECYC\ +1\) *0.02 seconds; the value is the active energy accumulation of the previous ($LINECYC+1\)\ *0.02$ seconds.

Zero-crossing time-out register (ZXTOUT)

Zero- cross	timeout (ZXTOUT)	Type: read and	Default value:
	Addr: 32H	write	FFFFH
Bit15 \sim 12	Bit11 [~] 8	Bit7 $^{\sim}$	Bit3 \sim
			0

The resolution of this register is $70.5 us/\,LSB\,.$

Fall Line Cycle Register (SAGCYC)

Falling line cycle (SAGCYC) Addr:			Type:	read and	Defaul	t value:	
33Н			write		FFH		
D7	D6	D5	D4	D3	D2	D1	DO

The resolution of this register is 10 ms/LSB .

Drop Voltage Threshold Register (SAGLVL)

Drop voltage t	hreshold (SAGLVL	Type: read and	Default value:
) Addr: 34H	write	000H
Bit11	Bit11 Bit10 ~ 8		Bit3 ~
			0

The register value is compared with the voltage effective value register V_RMS/2798. Peak Threshold Register (I_PKLVL, V_PKLVL)

Current peak t	hreshold (I_PKLVL) Addr: 36H	Type: read and write	Default value: 000000H
Bit23 ~ Bit16	Bit15 \sim 12	Bit11 ~ 4	Bit3 \sim 0
rese rve		Current A	A, Bpeak threshold

会 上海 风崎 / BL6523GX 单相多功能电能计量芯片

Voltage peak t	hreshold (V_PKLVL	Type: read and	Default value:
) Addr: 37H	write	000H
Bit11	Bit11 Bit10 ~ 8		Bit3 \sim
			0

Peak threshold register value = corresponding effective value register value /2798. Output Select Register (AT_SEL)

Output sele	ction (AT_SEL)	Type: read and	
	Addr : 38H	write	0000H
Bit15 \sim	Bit11 \sim	Bit7 \sim	Bit3 $^{\sim}$
12	8	4	0
AT3	AT2	reserv	reserv
		е	е

No corresponding pin; this function is invalid;

Interrupt Mask Register (MASK)

Interrupt mask (MASK)			Type: read and	Default	value:
Addr: 39H			write	0000H	
D15 D14 D13 D12···D2			D1	DO	

the corresponding position is $1\,,$ the corresponding function has $IRQ\,\, {\rm output}.$ No corresponding pin; this function is invalid;

Interrupt Status Register (STATUS)

Interrupt status (STATUS) Addr: 3AH				Type: read and write	000011		
D15	D14	D13	D12•••D2		D1	DO	

Loc atio n	interrupt flag	Defau lts	describe			
0	SAG	0	Indicates a line dip interrupt			
1	ZXTO	0	Indicates that a zero-crossing timeout interrupt is generated			
2	ZX	0	Indicates the generated voltage waveform sign bit			
3	РКІА	0	Indicate current A RMS peak value exceeds I_PKLVL interrupt			
4	РКІВ	0	Indicate current B RMS peak value exceeds I_PKLVL interrupt			
5	РКV	0	Indicates that the voltage RMS peak value exceeds V_PKLVL interrupt			
6	REVP	0	Indicates a sign change in the active power calculation			
7	APEHF	0	Indicates that bit 23 of the WATTHR register [23:0] goes to 1 (half Full)			
8	VAPEHF	0	Instruct VAHR Bit 23 of register [23:0] becomes 1 (half full)			
9	FAULT	0	Indicates that the two channels of current AB are unbalanced			
10	CHSEL	0	Indicates the measurement channel, 0 is the current A channel, 1 is the current B aisle			
11	VREF_LOW	0	Indicates that the reference voltage value is low, when it is 1, VREF<2V; when it is 0 normal			
12	SPI_DIN_ERR	0	reserve			
13	UART_DIN_ERR	0	Instruct UART Write error status flag, 1 Exceptions are written when, Writing is normal when it is 0			
14	VREF_HIGH	0	that the reference voltage value is too high. When it is 1, VREF>2.9V; Normal at 0			
15	Reversed	0				

Check register (CHKSUM)

Check (CHKSUM) Addr: 3D		dr: 3DH	Type: read and write	Default: 015ABAH		
D23	D22	D21	D20…D2		D1	DO

Sum the values of all writable registers, from $14\mathrm{H}$ to $39\mathrm{H}\left(35\mathrm{H}\,\mathrm{does}\,\,\mathrm{not}\,\,\mathrm{participate}\,\,$ in the checksum), take the lower $24\,\mathrm{bits}.$

Write Protection Setting Register (WRPROT)

Write	protection	setting (WRPROT)	Type: read and		Default value:	
Addr: 3EH			write		00H		
D7	D6	D5	D4	D3	D2	D1	DO

It is used to protect the registers that can be written through SPI. Writing 55H means that the write operation to the writable register is allowed. When writing other values, the write operation is prohibited.

Soft reset setting (SOFT_NRST)

Soft reset (SOFT_NRST)				type: write Default value:			t value:
		Addr :	3FH	00H			
D23	D22	D21	•••••		D2	D1	DO

can be issued through the UART interface to control the $BL6523G\,$ system reset. The logic sequence of the reset operation is as follows:

- 1) Open the write protection, write 55H to the WRPROT (3EH) register;
- 2) Soft reset instruction, SOFT_NRST (3FH) register writes 5A5A5AH;
- waiting time t After the chip is reset to the initial state, subsequent operations can be performed. Delay time 300uS.

Note: The above specification changes due to process or design changes will not be notified separately. Please feel free to request the latest version of the product specification.