

# fail - safe function ( Fail - Safe ) points lew rate limited

#### RS-485 transceiver

#### Chip overview

The BL3085A is a low-power transceiver for RS-485 communication, with one driver and one receiver in each device. The chip contains a fail-safe circuit to ensure that the output of the receiver is in a logic high state when the input of the receiver is open or short-circuited. The BL3085A features a slew-rate-limited driver that reduces EMI and reduces reflections caused by improperly terminated cables, enabling error-free data transmission up to 250kbps. The BL3085A has a high receive input impedance, making it possible to support up to 256 transceivers on the bus. The transceiver end of BL3085A has +/-10kV anti-static capability.

### Chip pin logic diagram and description



Figure 1: BL3085A pin logic diagram

### **Application field**

• industrial control

• Electricity meter, water meter, gas meter

www.belling.com.cn



Lighting system

BL3085A



## Chip pin description

| pin | nam             | function                                                                                                                            |
|-----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
|     | е               |                                                                                                                                     |
| 1   | RO              | receiver output.                                                                                                                    |
| 2   | /RE             | Receiver output enable. <b>RO</b> output is valid when /RE is low; when /RE <b>is</b> high, <b>RO</b> to a high-impedance state.    |
| 3   | DE              | Driver output enable. The driver output is valid when <b>DE</b> is high,<br>and the output is high-impedance when <b>DE</b> is low. |
| 4   | DI              | drive input.                                                                                                                        |
| 5   | GND             | grounded.                                                                                                                           |
| 6   | А               | receiver input and driver output.                                                                                                   |
| 7   | В               | receiver input and driver output.                                                                                                   |
| 8   | V <sub>cc</sub> | power input.                                                                                                                        |

#### Send and Receive Truth Tables

| 发送  |             |      |        |        |  |  |  |
|-----|-------------|------|--------|--------|--|--|--|
|     | 输入          | 输    | 出      |        |  |  |  |
| /RE | /RE DE DI B |      |        |        |  |  |  |
| Х   | 1           | 1    | 0      | 1      |  |  |  |
| Х   | 1           | 0    | 1      | 0      |  |  |  |
| 0   | 0           | Х    | High-Z | High-Z |  |  |  |
| 1   | 0           | Shut | down   |        |  |  |  |

| 斩   | 入  | 输出           |          |  |  |  |
|-----|----|--------------|----------|--|--|--|
| /RE | DE | A-B          | RO       |  |  |  |
| 0   | Х  | ≥-0.04V      | 1        |  |  |  |
| 0   | Х  | ≤-0.2V       | 0        |  |  |  |
| 0   | Х  | Open/shorted | 1        |  |  |  |
| 1   | 1  | Х            | High-Z   |  |  |  |
| 1   | 0  | Х            | Shutdown |  |  |  |



## Typical application circuit diagram



Figure 2. Typical application circuit diagram of BL3085A

### absolute maximum

| parameters                      | the symbol      | size                         | unit |
|---------------------------------|-----------------|------------------------------|------|
| supply voltage                  | V <sub>cc</sub> | +7                           | V    |
| Control input voltage           | /RE, DE         | -0.3 to V <sub>CC</sub> +0.3 | V    |
| Driver input voltage            | DI              | -0.3 to V <sub>CC</sub> +0.3 | V    |
| Driver output voltage           | А, В            | -8~+13                       | V    |
| Receiver input voltage          | А, В            | -8~+13                       | V    |
| Receiver output voltage         | RO              | -0.3 to V <sub>CC</sub> +0.3 | V    |
| range of working<br>temperature |                 | -40 $\sim$ +85               | °C   |



### **DC Electrical Characteristics**

( V  $_{CC}$  =+5V ±5 %, TA= - 40  $^\circ\!\!\mathrm{C}$   $^\sim$  + 85  $^\circ\!\!\mathrm{C}$ , typical value at V  $_{CC}$  =+5 V , TA = 25  $^\circ$  C ( Note 1 )

| parameter                                                                                 | symbo<br>I       | Test Conditions                              |                                              | the<br>smalles<br>t  | typic<br>al | maxim<br>um | unit |
|-------------------------------------------------------------------------------------------|------------------|----------------------------------------------|----------------------------------------------|----------------------|-------------|-------------|------|
| Working voltage                                                                           | Vcc              |                                              |                                              | 4.5                  |             | 5.5         | V    |
| range                                                                                     |                  |                                              |                                              |                      |             |             |      |
| driver                                                                                    |                  |                                              |                                              |                      |             |             |      |
| Differential Driver<br>Output                                                             | V <sub>OD1</sub> | Figure <b>3</b>                              |                                              |                      |             | 5           | V    |
| Differential Driver<br>Output                                                             | V <sub>OD2</sub> | Figure 3, R=27 $\Omega$                      |                                              | 1.5                  |             |             | V    |
| The magnitude of the<br>differential output<br>voltage varies<br>ization (Note <b>2</b> ) | $\Delta V_{OD}$  | Figure 3, R=27Ω                              |                                              |                      |             | 0.2         | V    |
| Driver Common Mode<br>Output Voltage                                                      | VOC _            | Figure 3, R=27 $\Omega$                      |                                              |                      |             | 3           | V    |
| Amplitude variation<br>of common mode<br>voltage<br>(Note <b>2</b> )                      | $\Delta V_{OC}$  | Figure 3, $R{=}27\Omega$                     |                                              |                      |             | 0.2         | V    |
| input high voltage                                                                        | V IH1            | DE,DI,/RE                                    |                                              | 2.0                  |             |             | V    |
| input low voltage                                                                         | V <sub>IL1</sub> | DE,DI,/RE                                    |                                              |                      |             | 0.8         | V    |
| <b>DI</b> input hysteresis                                                                | V <sub>HYS</sub> |                                              |                                              |                      | 100         |             | mV   |
| Input Current Half<br>Duplex                                                              | I <sub>IN4</sub> | DE=GND<br>VCC = <sub>GND</sub> or 5.25V      | V <sub>IN</sub> =12V<br>V <sub>IN</sub> =-7V |                      |             | 125<br>-75  | μA   |
|                                                                                           |                  | $-7V \leq V_{OUT} \leq V_{CC}$               |                                              | -250                 |             |             |      |
| Driver short circuit                                                                      | I <sub>OSD</sub> | $0V \leq VOUT \leq 12V$                      | _                                            |                      |             | 250         | mA   |
| (Noto <b>2</b> )                                                                          |                  | $0V \leq V_{OUT} \leq V_{CC}$                |                                              | ±25                  |             |             |      |
| (Note 5)                                                                                  |                  |                                              |                                              |                      |             |             |      |
| Receiver<br>Differential<br>Threshold Voltage                                             | VTH _            | -7V ≦ VCM ≦ 12V _                            |                                              | -200                 | -125        | -40         | mV   |
| Receiver Input Skew                                                                       | ΔVth             |                                              |                                              |                      | 40          |             | mV   |
| Receiver output high voltage                                                              | V <sub>OH</sub>  | I <sub>O</sub> =-4mA, V <sub>ID</sub> =-50mV |                                              | V <sub>CC</sub> -1.5 |             |             | V    |
| Receiver output low voltage                                                               | V <sub>OL</sub>  | I <sub>O</sub> =4mA, V <sub>ID</sub> =-200n  | ۱V                                           |                      |             | 0.4         | V    |
| Receiver Tri-State<br>Output Current                                                      | QUR<br>-         | $0.4V \leq VO \leq 2.4V$                     | _                                            |                      |             | ±1          | μA   |



#### BL3085A

| Receiver input                 | R <sub>IN</sub>   | $-7V \leq VCM \leq 12V_{-}$  |                      | 96 |     |     | KΩ |
|--------------------------------|-------------------|------------------------------|----------------------|----|-----|-----|----|
| impedance                      |                   |                              |                      |    |     |     |    |
| Receiver output                | OSR               | $0V \leq V_{RO} \leq V_{CC}$ |                      | ±7 |     | ±95 | mA |
| short circuit                  |                   |                              |                      |    |     |     |    |
| current                        |                   |                              |                      |    |     |     |    |
| supply current                 |                   |                              |                      |    |     |     |    |
| augusti august                 | 1                 | No load ,/RE=DI=             | DE=V cc              |    | 475 | 900 | μA |
| supply current                 | CC                | GND or VCC _                 | DE=GND               |    | 420 | 800 | μA |
| Supply current in standby mode | I <sub>SHDN</sub> | DE=GND, /RE=VCC<br>or GND    | , DI=V <sub>CC</sub> |    | 0.1 | 10  | μA |

Note 1 : All currents into the device are positive and all currents out of the device are

negative; all voltages are to ground unless otherwise specified. Note 2: When  $\mathsf{DI}$  input changes

state,  $\bigtriangleup$  V op and  $\bigtriangleup$  V oc V op\_ and V oc amount of change.

Note  $\mathbf{3}$ : Maximum current is used for peak current just before regenerative current limiting, minimum current is used during current limiting.



### transmission characteristics

( V cc =+5V±5%, TA= -40 °C  $^{\sim}$  +85 °C, the typical value is at V cc =+5V, TA = 25 °C)

| para                                                            | symbol                            | condition                                                                    | the   | typi | maxi | unit |
|-----------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------|-------|------|------|------|
| mete                                                            |                                   |                                                                              | sma   | cal  | mu   |      |
| r                                                               |                                   |                                                                              | llest |      | m    |      |
| Driver input to output                                          | T <sub>DPLH</sub>                 | Figures 5 and 7 , R $_{DIFF}$                                                | 250   | 720  | 2000 | ne   |
|                                                                 | T <sub>DPHL</sub>                 | =54Ω C <sub>L1</sub> =C <sub>L2</sub><br>=100pF                              | 250   | 720  | 1000 | 115  |
| Driver output  T dplH -<br>T dpHL                               | T <sub>DHKEW</sub>                | Figures 5 and 7 , R $_{DIFF}$<br>=54 $\Omega$ C $_{L1}$ =C $_{L2}$<br>=100pF |       | -3   | ±100 | ns   |
| Driver Rise or Fall<br>Time                                     | T <sub>DR</sub> , T <sub>DF</sub> | Figures 5 and 7 , R $_{DIFF}$<br>=54 $\Omega$ C $_{L1}$ =C $_{L2}$<br>=100pF | 200   | 530  | 750  | ns   |
| Maximum data rate                                               | F <sub>MAX</sub>                  |                                                                              | 250   |      |      | kbps |
| Driver Enable to<br>Output High                                 | TZH _                             | Figures 6 and 8, $C_L=100pF$<br>S2 off                                       |       |      | 2500 | ns   |
| Driver Enable to<br>Output Low                                  | QZL                               | Figures 6 and 8, C <sub>L</sub> =100pF<br>S1 off                             |       |      | 2500 | ns   |
| Low to drive inactive time                                      | DLZ                               | Figures 6 and 8, C <sub>L</sub> =15pF<br>S1 off                              |       |      | 100  | ns   |
| High to drive invalid time                                      | T <sub>DHZ</sub>                  | Figures 6 and 8, C <sub>L</sub> =15pF<br>S2 off                              |       |      | 100  | ns   |
| receiver input to<br>output                                     | T <sub>RPLH</sub><br>RPHL _       | Figures 9 and 11,  VID ≥2.0V<br>VID ≦ 15ns The rise and<br>fall times of     |       | 127  | 200  | ns   |
| Differential Receiver<br> T <sub>DPLH</sub> — T <sub>DPHL</sub> | T <sub>RSKD</sub>                 | Figures 9 and 11,  VID ≥2.0V<br>VID ≦ 15ns The rise and<br>fall times of     |       | 3    | ±30  | ns   |
| Receiver Enable to<br>Output Low                                | QUR_                              | picture 4 and 10 $C_L = 100 p$<br>F S 1 closure                              |       | 20   | 50   | ns   |
| Receiver Enable to<br>Output High                               | QUR _                             | picture 4 and 10 $C_L = 100 p$<br>F S 2 closure                              |       | 20   | 50   | ns   |
| Receiver Low to<br>Inactive Time                                | RLZ                               | picture 4 and 10 $C_L = 100 p$<br>F S 1 closure                              |       | 20   | 50   | ns   |
| Receiver High to<br>Inactive Time                               | T <sub>R</sub>                    | picture 4 and 10 $C_{L}$ = 1 0 0 p<br>F S 2 closure                          |       | 20   | 50   | ns   |
| Standby time                                                    | T <sub>SHDN</sub>                 |                                                                              | 50    | 200  | 600  | ns   |



#### BL3085A

| Driver Enable from<br>Standby to Output<br>High       | T <sub>DZH(SHDN)</sub>  | Figures 6 and 8, C <sub>L</sub> =15pF<br>S2 off |  | 4500 | ns |
|-------------------------------------------------------|-------------------------|-------------------------------------------------|--|------|----|
| Driven from standby to<br>output low<br>device enable | T <sub>DZL(SHDN)</sub>  | Figures 6 and 8, C <sub>L</sub> =15pF<br>S1 off |  | 4500 | ns |
| Receiver Enable from<br>Standby to Output<br>High     | T <sub>RZH (SHDN)</sub> | picture 4 and 10 $C_L = 100 p$<br>FS2 closure   |  | 3500 | ns |
| Receiver Enable from<br>Standby to Output Low         | T <sub>RZL (SHDN)</sub> | picture 4 and 10 C L = 100 p<br>FS1 closure     |  | 3500 | ns |



#### Test circuit and switch characteristics





picture 3 : Driver DC Test Load



图 5: Driver Timing Test Circuit





图 6: Driver Enable/Disable Timing test Load



图 7: Driver Propagation Delays



图 8: Driver Enable and Disable Times





picture 9 : Receiver Propagation Delays



diagram 10: Receiver Enable and Disable Times



Figure 11: Receiver Propagation Delay Test Circuit



# Package Information SOP8L

