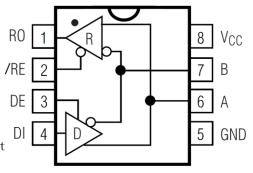


± 15 kV _ E S D Protection, 16 Mbps, with fail - safe (Fail - Safe)

RS-485

transceiver

product description


BL1590 is a 3~5.5V wide power supply, half-duplex RS-485 transceiver, the chip contains a driver and a receiver. Can achieve up to 16Mbps error-free data transmission. The BL1590 has a built-in fail-safe circuit to ensure that the output of the receiver is in a logic high state when the input of the receiver is open or shorted.

BL1590 has excellent driving capability, and the driver can provide a differential output voltage of 3.4V under the condition of 5V power supply and 54Ω load. BL1590 supports hot-swapping function, the driver and receiver are in the off state during power-on, to avoid conflicts on the bus when plugging and unplugging.

The BL1590 has a 1-unit load receiver input impedance, allowing up to 32 transceivers on the bus . The I/O pin ESD protection capability reaches \pm 15KV IEC 61000-4-2, contact discharge.

Product Features Block Diagram

- ➤ Working voltage: 3~5.5V
- > Maximum transfer rate: 16Mbps
- ➤ Built-in fail-safe circuit
- > Bus allows up to 32 transceivers to be attached
- > Support hot swap function
- ightharpoonup I/O pin ESD protection: \pm 15KV IEC 61000-4-2, cont
- ➤ SOP8 package

Application field

- ➤ industrial control
- ➤ smart meter
- > Collection terminal
- ➤ security monitor

www.belling.com.cn	Page2	V1.1

Pin definition

seri al numb er	name	function
1	RO	receiver output
2	/RE	Receiver output enable. RO output is valid when / RE is low level; RO is high impedance state when /RE is high level
3	DE	Driver output enable. The driver output is valid when DE is high level, and the output is high impedance state when DE is low level
4	DI	drive input
5	GND	grounding
6	А	Receiver non-inverting input and driver non-inverting output
7	В	Receiver inverting input and driver inverting output
8	V _{cc}	power supply

Driver Truth Table

ente r			outp ut		
/RE	DE	DI	A B		
Х	1	1	1	0	
Х	1	0	0	1	
0	0	Х	High-Z High-Z		
1	0	Х	Shutdown (High-Z)		

Receiver Truth Table

	outp ut		
r			ut
/RE	DE	AB	RO
0	X	>-10mV	1
0	X	<-200mV	0

BL1590

0	X	open /short	1
1	1	X	High-Z
1	0	X	Shutdown (High-Z)

Limit parameter

parameters	the symbol	limit value	unit
Operating Voltage	V _{cc}	+7	V
Control input voltage	/RE, DE	-0.3 to V cc +0.3	V
Driver input voltage	DI	-0.3 to V _{CC} +0.3	V
Driver output voltage	A, B	±13	V
Receiver input voltage	A, B	±13	V
Receiver output voltage	RO	-0.3 to V _{CC} +0.3	V
range of working temperature		-40~+125	$^{\circ}$ C

DC Electrical Characteristics

($Vcc=+3.0\,V\sim+5.5\,V$, $TA=-40\,^{\circ}C$ $^{\sim}+125\,^{\circ}C$, unless otherwise specified, the typical value is at $Vcc=+5\,V$, $T_A=25\,^{\circ}C$ (Note 1)

parameter	symbol	Test Conditions	minimu m value	typical value	maximum value	unit
driver						
Differential driver output (no load)	V _{OD1}	Figure 1			V cc	V
Differential	V _{OD2}	V_{CC} =5 V Figure 1, R=27 Ω	2.7	3.4		V
Differential Driver Output	V OD2	V _{CC} =3V Figure 1, R=27Ω	1.5	1.8		V
The magnitude of the differential	ΔV OD	Figure 1, R=27Ω	-0.2		0.2	V
output voltage Variation (Note 2)						
Driver Common Mode Output Voltage	VOC _	Figure 1, R=27Ω		V _{CC} /2	3.0	V
Amplitude variation of common mode voltage	ΔV oc	Figure 1, R=27Ω	-0.2		0.2	V
(Note 2)						

www.belling.com.cn Page3 V1.1

						DI 4		
input high voltage	٧_	DE,DI,/RE		2.0		BL1	29U [/]	
input low voltage	VIL	DE,DI,/RE				0.8	V	
DI input hysteresis	V _{HYS}				100		mV	
Input Current	I _{IN4}	DE=GND V cc	V _{IN} =12V			800	μA	
(A, B)	1 114	=GND or V cc	V _{IN} =-7V	-800			F. Y	
Driver short circuit output current	I _{OSD}	A Pin Sho	rt to B Pin	-250		250	mA	
receiver								
Receiver Differential Threshold Voltage	VT H_	-7V ≤ VC	CM ≤ 12V _	-200	-125	-10	mV	

						1	
Receiver Input Hysteresis	△ V _{TH}				25		mV
D	V	$V_{CC} = 5V, I_{O}$	=-8mA	4.0			V
Receiver output high voltage	V OH	$V_{CC} = 3V, I_{O}$	=-4mA	2.45			V
Danisa autout	V	$V_{CC} = 5V, I_{O}$	=8mA			0.4	V
Receiver output low voltage	V _{OL}	$V_{CC} = 3V, I_{O}$	=4mA			0.4	V
Receiver Tri-State Output Current	QUR _					±1	μΑ
Receiver input impedance	R _{IN}	-7V ≤ VCM	l ≤ 12V _	12			ΚΩ
Receiver output short circuit current	OSR_	$0V \leqslant V_{RO} \leqslant V_{CC}$				±100	mA
supply current							
_		No load ,	DE=V cc		1.5	2	mA
supply current		/RE=DI= GND or vcc	DE=GND		1.2	2	mA
Standby Mode Supply Current	I _{SHDN}	DE=GND, /RE= _{VCC} , DI=V _{CC} or GND				2	μΑ

Note 1: All currents into the device are positive and all currents out of the device are negative; all voltages are to ground unless otherwise specified. Note 2: When DI input changes state, \triangle V_{OD} and \triangle V_{OC} V_{OD} and V_{OC} amount of change.

transmission characteristics

(V cc = + 3.0V~+5.5V, TA=-40 °C ~ +125 °C, unless otherwise specified, the typical value is at V cc = + 5V, TA = 25 °C)

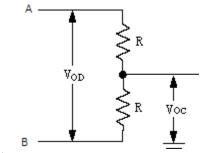
parameter	symbol	cond itio n	minimu m value	typical value	maximum value	unit
Driver input	wxya _	Figures 3 and 5, R DIFF		11	28	
to output	t DPHL	=54Ω C _{L1} =C _{L2} =100pF		16	35	ns
delay						
Driver output delay Difference	tDSKEW	Figures 3 and 5, R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF		5		ns
T _{DPLH} -						

www.belling.com.cn Page5 V1.1

BL1590

Driver Rise or Fall Time	t DR, t DF	Figures 3 and 5, R $_{DIFF}$ =54 Ω C $_{L1}$ =C $_{L2}$ =100pF		6.5		ns
maximum rate	F _{MAX}		16			Mbps
Driver Enable to Output High	wxya _	Figure 4 6, C _L =100pF S2 and Closed		25	50	ns
Driver Enable to Input low level	wxya _	Figure 4 6, C _L =100pF S1 and Closed		28	80	ns
drives the output low from the to off time	lm _w	Figure 4 6, C _L =15pF S1 and Closed		tw en ty tw	45	ns

www.belling.com.cn Page6 V1.1



drives the output high from the to off time	wxya _	Figure 4 6, C _L =15pF S2 and Closed	twen y one		80	ns
Receiver input and output delay	t _{RPLH} tRPHL _	Figures 7 and 9, V _{ID} ≥2.0V; rise and fall time of V _{ID} ≤ 15ns	4:	5	70	ns
T RPLH - T RPHL Difference between receiver input and output delay	t _{RSKD}	Figures 7 and 9, V _{ID} ≥2.0V; rise and fall time of V _{ID} ≤ 15ns	5	;		ns
Receiver Enable to Input out low	wxya _	Figure 2 8, C _{RL} =15pF S1 and Closed	1:	2	25	ns
Receiver Enable to Input	wxya _	Figure 2 8, C _{RL} =15pF S2 and Closed	8	}	25	ns
high receiver outputs low from the to shutdown	lm _w	Figure 2 8, C _{RL} =15pF S1 and Closed	9)	25	ns
Receiver output high from	wxya _	Figure 2 8, C _{RL} =15pF S2 and Closed	10)	25	ns
to shutdown circuit off time	t shon				500	ns
Driver Enable from Standby to Output High	t dzh(shdn)	Figures 4 and 6, C _L =100pF S2 Closed	3	i	5	μs
from standby to output low driver enable	t dzl(shdn)	Figure 4 6, C _L =100pF S1 and Closed	3	}	5	μs
Receiver Enable from Standby to Output High	t RZH(SHDN)	Figure 2 8, C _{RL} =15pF S2 and Closed	3	}	5	μs

Receiver Enable from Standby to	t RZL(SHDN)	Figure 2 8, C _{RL} =15pF S1 and Closed	3	5	μs	
Output Low						1

test circuit

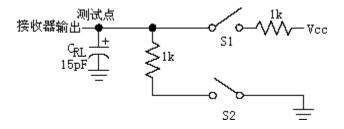


图 2: Receiver Enable/Disable Timing Test Load

www.belling.com.cn Page8 V1.1

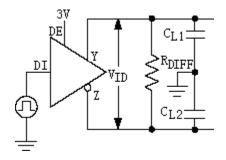


图 3: Driver Timing Test Circuit

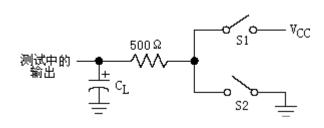


图 4: Driver Enable/Disable Timing Test Load

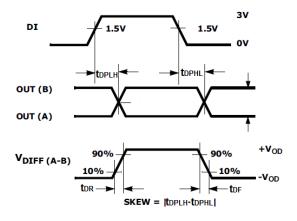


Figure 5: Driver Propagation Delays

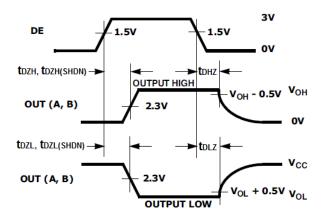


Figure 6: Driver Enable and Disable Times

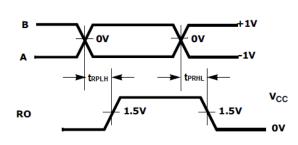


Figure 7: Receiver Propagation Delays

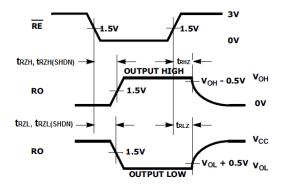


Figure 8: Receiver Enable and Disable Times



Figure 9: Receiver Propagation Delay Test Circuit

www.belling.com.cn Page9 V1.1

Typical Application Diagram

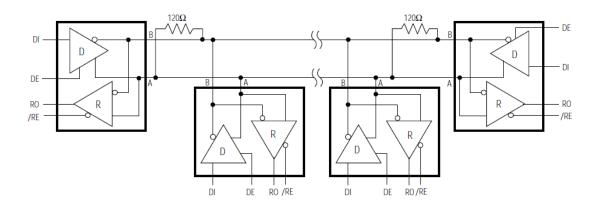
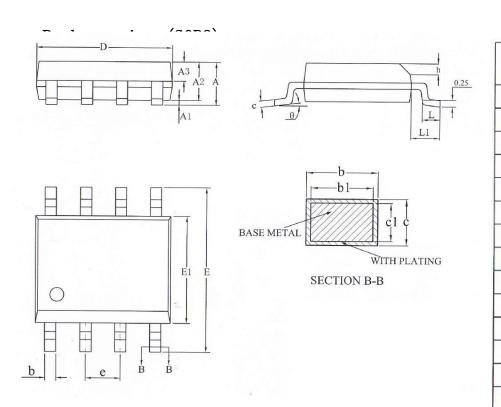



Figure 10 Typical half-duplex RS-485 network

SYMBOL	MILLIMETER				
SIMBOL	MIN	NOM	MAX		
A	_	_	1.77		
A1	0.08	0.18	0.28		
A2	1.20	1.40	1.60		
A3	0.55	0.65	0.75		
b	0.39	_	0.48		
b1	0.38	0.41	0.44		
с	0.20	_	0.26		
c1	0.19	0.20	0.21		
D	4.70	4.90	5.10		
Е	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
e	1.27BSC				
h	0.25	_	0.50		
L	0.50	_	0.80		
L1	1.05REF				
θ	0		8°		

www.belling.com.cn Page10 V1.1