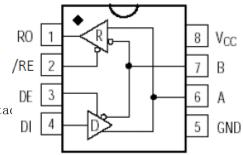


RS-485 Transceiver with Fail -Safe


product description

BL1587 is a half-duplex RS-485 transceiver, the chip contains a driver and a receiver. BL1587 can provide the highest transfer rate of 2Mbps. The chip has a built-in fail-safe circuit to ensure that the output of the receiver is in a logic high state when the input of the receiver is open or short-circuited. The BL1587 has a 1/4 unit load receiver input impedance, allowing up to 128 transceivers on the bus.

Product Features

- ➤ +5V working voltage
- > Maximum transfer rate: 2Mbps
- > Built-in fail-safe circuit
- > Bus allows up to 128 transceivers
- ➤ I/O pin ESD protection: ± 15kV IEC 61000-4-2, contact
- > SOP8 package

Block Diagram

Application field

- > smart meter
- > industrial control
- security monitor

www.belling.com.cn Page- 1 - V1.3

Pin definition

seri al numb er	name	function
1	RO	receiver output
2	/RE	Receiver output enable. RO output is valid when / RE is low level; RO is high impedance state when /RE is high level
3	DE	Driver output enable. The driver output is valid when DE is high level, and the output is high impedance state when DE is low level
4	DI	drive input
5	GND	grounding
6	А	Receiver non-inverting input and driver non-inverting output
7	В	Receiver inverting input and driver inverting output
8	V cc	power supply

Driver Truth Table

ente r			outp ut		
/RE	DE	DI	А	В	
Х	1	1	1	0	
Х	1	0	0	1	
0	0	Х	High-Z	High-Z	
1	0	Х	Shutdown (High-Z)		

Receiver Truth Table

	outp		
r			ut
/RE	DE	AB	RO
0	X	>-50mV	1

0	X	<-200mV	0
0	X	open /short	1
1	1	X	High-Z
1	0	X	Shutdown (High-Z)

Limit parameter

parameters	the symbol	limit value	unit
Operating Voltage	V _{cc}	+7	V
Control input voltage	/RE, DE	-0.3 to V cc +0.3	V
Driver input voltage	DI	-0.3 to V cc +0.3	V
Driver output voltage	A, B	±13	V
Receiver input voltage	A, B	±13	V
Receiver output voltage	RO	-0.3 to V cc +0.3	V
range of working temperature		-40~+85	$^{\circ}$

DC Electrical Characteristics

(VCC=+5 V \pm 5 % ,TA=-40 °C \sim +85 °C, typical value is at VCC=+5V, TA = 25 °C (Note 1)

parameter	symbol	Test Conditions	minimu m value	typica l value	maximu m value	unit
Operating Voltage	V _{cc}		4.5		5.5	V
driver			·			
Differential driver output (no	V _{OD1}	Figure 1			V _{cc}	V
load)		\\(\rm \)				
Differential Driver Output	V_{OD2}	VCC=5V Figure 1, R=27Ω	1.5	2.1		V
The magnitude of the differential output voltage	ΔV od	Figure 1, R=27Ω			0.2	V
Variation (Note 2						
Driver Common Mode Output Voltage	VOC _	Figure 1, $R=27\Omega$	1.0		3.0	V
Amplitude variation of common mode	ΔV oc	Figure 1, R=27Ω			0.2	V
voltage						
(Note 2)						
input high voltage	V _	DE,DI,/RE	2.0			V

www.belling.com.cn Page4 V1.3

BL1587

input low voltage	VIL	DE,DI,/RE				0.8	V
DI input hysteresis	V _{HYS}				100		mV
Input Current (A	ı	DE=GND V cc	V _{IN} =12V			220	μA
, B)	IN4	=GND	V _{IN} =-7V	-120			P 2
		or 5.25V					
Driver short	I _{OSD}	A Pin Sho	rt to B Pin	-100		100	mA
circuit output							
current							
receiver							
Receiver	VTH _	-7V ≤ VC	CM ≤ 12V _	-200	-125	-50	mV
Differential	_						
Threshold Voltage							

www.belling.com.cn Page5 V1.3

Receiver Input Hysteresis	△ V тн				40		mV
Receiver output high voltage	V _{OH}	I _O =-8mA, V 50mV	ID =-	4.0			V
Receiver output low voltage	V _{OL}	I _O =8mA,V _{II} 200mV)=-			0.4	V
Receiver Tri-State Output Current	QUR _					±1	μΑ
Receiver input impedance	R _{IN}	-7V ≤ VCM	≤ 12V _	48			ΚΩ
Receiver output short circuit current	OSR_	0V ≪ V _{RO} ≤	€ V cc	±7		±95	mA
supply current							
_			DE=V cc		900		μΑ
supply current	CC	/RE=DI= GND or _{VCC}	DE=GND		900		μΑ
Standby Mode Supply Current	I _{SHDN}	DE=GND, /F				10	μΑ

Note 1: All currents into the device are positive and all currents out of the device are negative; all voltages are to ground unless otherwise specified. Note 2: When DI input changes state, \triangle V op and \triangle V oc V op and V oc amount of change.

transmission characteristics

(VCC=+5V±5%, TA=-40 $^{\circ}$ $^{\circ}$ +85 $^{\circ}$, the typical value is VCC=+5V , TA = 25 $^{\circ}$)

parameter	symbol	cond itio n	minimu m value	typica 1 value	maximu m value	unit
Driver input	wxya _	Figures 3 and 5, R DIFF		13		20
to output	t _{DPHL}	=54Ω C _{L1} =C _{L2} =100pF		17		ns
delay						
Driver output delay difference Toplh - Tophl	tDSKEW -	Figures 3 and 5, R _{DIFF} =54Ω C _{L1} =C _{L2} =100pF		5		ns
Driver Rise or Fall Time	t _{DR} , t _{DF}	Figures 3 and 5, R DIFF = 54Ω C $_{L1}$ = C $_{L2}$ = 100 pF		8		ns
maximum rate	F _{MAX}		2			Mbps

www.belling.com.cn Page6 V1.3

BL1587

Driver Enable to Output High	wxya _	Figure 4 6, C L=100pF S2 and Closed	20	ns
Driver Enable to Input low level	wxya _	Figure 4 6, C _L =100pF S1 and Closed	28	ns
drives the output low from the to off time	lm _w	Figure 4 6, C _L =15pFS1 and Closed	19	ns
drives the output high from the to off time	wxya _	Figure 4 6, C _L =15pF S2 and Closed	16	ns
Receiver input and output Delay	t _{RPLH} tRPHL _	7 and 9, _	42	ns

www.belling.com.cn Page7 V1.3

		; rise and fall time of VID \leq 15ns		
T _{RPLH} - T _{RPHL}	t _{RSKD}	7 and 9, _	5	ns
Difference between		; rise and fall time of VID ≦ 15ns		
receiver input and output				
delay				
Receiver Enable to Input	wxya _	Figure 2 8, C _{RL} =15pF S1 and Closed	10	ns
out low		Ciosed		
Receiver Enable to Input	wxya _	Figure 2 8, C _{RL} =15pF S2 and Closed	45	ns
high				
receiver outputs low from the	lm _w	Figure 2 8, C _{RL} =15pF S1 and Closed	10	ns
to shutdown Receiver		Figure 2 8, C _{RL} =15pF S2		
output high from	wxya _	and Closed	45	ns
to shutdown circuit off time	t _{SHDN}		100	ns
Driver Enable from Standby to Output High	t _{DZH(SHDN)}	Figures 4 and 6, C _L =100pF S2 Closed	1600	ns
from standby to output low driver enable	t _{DZL(SHDN)}	Figure 4 6, C L=100pF S1 and Closed	1600	ns
Receiver Enable from Standby to	t _{RZH(SHDN)}	Figure 2 8, C _{RL} =15pF S2 and Closed	1500	ns
Output High				
Receiver Enable from Standby to	t _{RZL(SHDN)}	Figure 2 8, C _{RL} =15pF S1 and Closed	2300	ns
Output Low				

test circuit

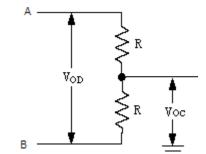


Figure 1: Driver DC Test Load

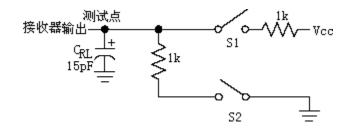


Figure 2: Receiver Enable/Disable Timing Testload

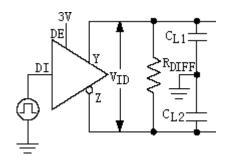


图 3: Driver Timing Test Circuit

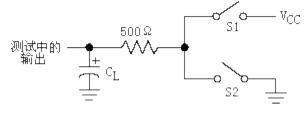


图 4: Driver Enable/Disable Timing Test Load

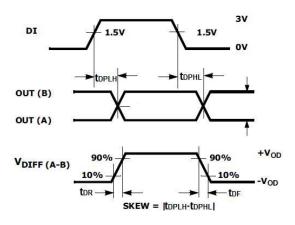


图 5: Driver Propagation Delays

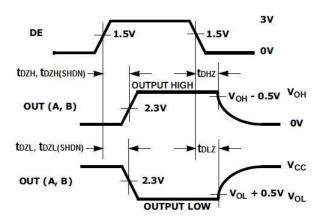
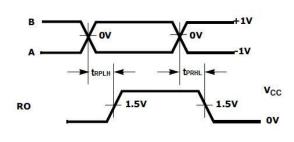



图 6: Driver Enable and Disable Times

 $\label{eq:Figure 7} \textit{Figure 7}: \ \textit{Receiver Propagation Delays}$

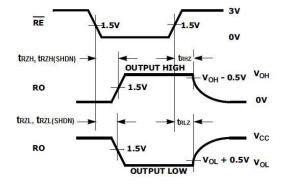
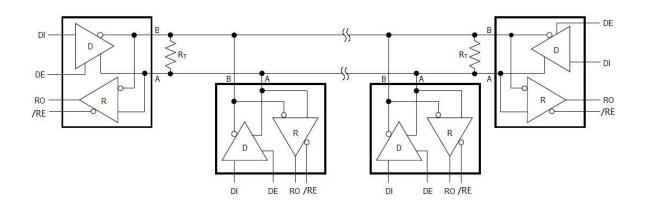
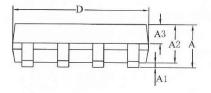


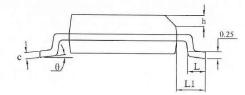
Figure 8: Receiver Enable and Disable Times

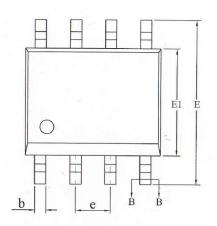
Figure 9: Receiver Propagation Delay Test Circuit

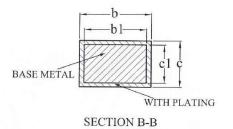
www.belling.com.cn Page10 V1.3

Typical Application Diagram


Figure 10 Typical half-duplex RS-485 network


www.belling.com.cn Page11 V1.3



Package size (SOP8)

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
A	_	_	1.77	
A1	0.08	0.18	0.28	
A2	1.20	1.40	1.60	
A3	0.55	0.65	0.75	
b	0.39	-	0.48	
b1	0.38	0.41	0.44	
с	0.20	I	0.26	
c1	0.19	0.20	0.21	
D	4.70	4.90	5.10	
Е	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
e		1.27BSC		
h	0.25	_	0.50	
L	0.50		0.80	
L1		1.05REF		
θ	0		8°	