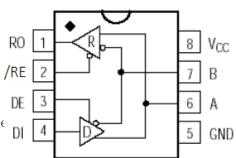


With fail-safe function (Fail-Safe), low power consumption, limited slew rate

RS-485 transceiver

product description

BL1585B is a 5V power supply, half-duplex RS-485 transceiver, the chip contains a driver and a receiver. The BL1585B uses a slew-rate-limited driver, which can significantly reduce EMI and reflections caused by improperly terminated cables, and realize


Now up to 500kbps error-free data transmission. BL1585B has a built-in fail-safe circuit to ensure that the output of the receiver is in a logic high state when the input of the receiver is open or short-circuited.

BL1585B receiver is 1/8 unit load, allowing up to 256 transceivers to be connected to the bus to realize half-duplex communication. BL1585B I/O pins have \pm 15kV IEC 61000-4-2 contact discharge protection capability.

Product Features

- ➤ +5V working voltage
- ➤ Built-in fail-safe circuit
- ➤ Up to 500kbps transfer rate
- Allows up to 256 transceivers on the bus
- ➤ With ± 15kV IEC 61000-4-2 Contact discharge prote
- ➤ SOP8 package

Block Diagram

Application field

- smart meter
- > industrial control
- security monitor

Pin definition

seri al numb er	name	function
1	RO	receiver output
2	/RE	Receiver output enable. RO output is valid when / RE is low level; RO is high impedance state when /RE is high level
3	DE	Driver output enable. The driver output is valid when DE is high level, and the output is high impedance state when DE is low level
4	DI	drive input
5	GND	grounding
6	А	Receiver non-inverting input and driver non-inverting output
7	В	Receiver inverting input and driver inverting output
8	V _{cc}	power supply

Driver Truth Table

ente r			outp ut		
/RE	DE	DI	A B		
х	1	1	1	0	
х	1	0	0	1	
0	0	Х	High-Z High-Z		
1	0	Х	Shutdown (High-Z)		

Receiver value-added table

ente			outp
r			ut
/RE	DE	AB	RO
0	X	>-50mV	1
0	X	<-200mV	0

0	X	open /short	1
1	1	X	High-Z
1	0	X	Shutdown (High-Z)

www.belling.com.cn Page3 V1.1

Limit parameter

parameters	the symbol	limit value	unit
Operating Voltage	V _{cc}	+7	V
Control input voltage	/RE, DE	-0.3 to V cc +0.3	V
Driver input voltage	DI	-0.3 to V _{CC} +0.3	V
Driver output voltage	A, B	-8~+13	V
Receiver input voltage	A, B	-8~+13	V
Receiver output voltage	RO	-0.3 to V _{CC} +0.3	V

temperature range

Operating temperature	-40~+85 ℃
storage temperature	-65~+150 ℃

DC Electrical Characteristics

(VCC =+ 5 V \pm 5 % , TA = -40 °C $^{\sim}$ +85 °C, typical value at VCC = +5V, TA = 25 °C (Note 1)

parameter	symbol	Test Conditions	minimu m value	typical value	maximu m value	unit
Operating Voltage	Vcc		4.5		5.5	V
driver						
Differential driver output (no	V _{OD1}	Figure 1			5	V
load)						
Differential Driver Output	V _{OD2}	Figure 1, $R=27\Omega$	1.5			V
The magnitude of the differential output voltage	ΔV _{OD}	Figure 1, R=27Ω			0.2	V
Variation (Note 2						

www.belling.com.cn Page4 V1.1

Driver Common Mode Output Voltage	VOC _	Figure 1, $R=27\Omega$	1.0	3.0	V
Amplitude variation of common mode	ΔV oc	Figure 1, R=27Ω		0.2	V
voltage (Note 2)					
input high voltage	V _	DE,DI,/RE	2.0		V
input low voltage	VI L_	DE,DI,/RE		0.8	V

www.belling.com.cn Page5 V1.1

DI input hysteresis	V _{HYS}				100		mV
Input Current (A, B)	I _{IN4}	DE=GND V cc =GND or 5.25V	V _{IN} =12V V _{IN} =-7V	-75		125	μΑ
Driver short circuit output current	 OSD	-7V ≦ V _{OUT} ≦ V _{CC} 0V ≦ VOUT ≦ 12V		-100		100	mA
receiver		1					
Receiver Differential Threshold Voltage	VTH _	-7V ≦ VC	CM ≦ 12V _	-200	-125	-50	mV
Receiver Input Hysteresis	△ V тн				40		mV
Receiver output high voltage	V _{OH}	I _O =-8mA, 50mV	V _{ID} =-	4.0			V
Receiver output low voltage	V _{OL}	I _O =8mA,\ 200mV	/ _{ID} =-			0.4	V
Receiver Tri-State Output Current	QUR _					±1	μΑ
Receiver input impedance	R _{IN}	-7V ≦ VC	CM ≦ 12V _	96			ΚΩ
Receiver output short circuit current	OSR _	0V ≦ V _R (o ≦ V cc	±7		±95	mA
supply current							
supply current	I _{cc}	No load , /RE=DI=	DE=V cc		150	600	μΑ
		GND or vo	c DE=GND		185	600	μA
Standby Mode Supply Current	I _{SHDN}	DE=GND, DI=V _{CC} or	/RE=VCC , GND			10	μΑ

Note 1: All currents into the device are positive and all currents out of the device are negative; all voltages are to ground unless otherwise specified. Note 2: When DI input changes state, \triangle V op and \triangle V oc V op and V oc amount of change.

transmission characteristics

(VCC=+5V±5%, TA=-40 $^{\circ}\text{C}$ $^{\sim}$ +85 $^{\circ}\text{C}$, the typical value is VCC=+5V , TA = 25 $^{\circ}\text{C}$)

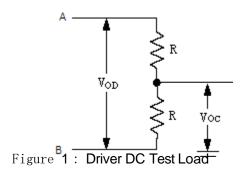
parameter	symbol	cond	minimu	typica	maximu	unit
		itio	m	1	m	

www.belling.com.cn Page6 V1.1

		n	value	value	value	
Driver input	wxya _ t _{DPHL}	Figures 3 and 5, R DIFF = 54Ω C $_{L1}$ = C $_{L2}$ = 100 pF		450 450	800	ns
delay						
Driver output delay difference	tDSKEW	Figures 3 and 5, R $_{DIFF}$ =54 Ω C $_{L1}$ =C $_{L2}$ =100pF			100	ns
T _{DPLH} - T _{DPHL}						
Driver Rise or Fall Time	t _{DR} , t _{DF}	Figures 3 and 5, R DIFF = 54Ω C $_{L1}$ = C $_{L2}$ = 100 pF		150	500	ns
maximum rate	F _{MAX}		500			kbps

www.belling.com.cn Page7 V1.1

Driver Enable to Output High	wxya _	Figures 4 and 6, C _L =100pF S2 Closed		200	ns
Driver Enable to Input low level	wxya _	Figures 4 and 6, C _L =100pF S1 Closed		200	ns
drives the output low from the to off time	lm _w	Figures 4 and 6, C _L =15pF S1 Closed		300	ns
drives the output high from the to off time	wxya _	Figures 4 and 6, C _L =15pF S2 Closed		300	ns
Receiver input and output delay	t _{RPLH} tRPHL _	7 and 9, _ ; rise and fall time of VID \leq 15ns	450	800	ns
T RPLH - T RPHL Difference between receiver input and output delay	t _{RSKD}	7 and 9, _ ; rise and fall time of VID ≦ 15ns	30		ns
Receiver Enable to Input out low	wxya _	Figures 2 and 8, C _{RL} =15pF S1 Closed	20	50	ns
Receiver Enable to Input high	wxya _	Figures 2 and 8, C _{RL} =15pF S2 Closed	20	50	ns
receiver outputs low from the to shutdown	lm _w	Figures 2 and 8, C _{RL} =15pF S1 Closed	80	150	ns
Receiver output high from to shutdown	wxya _	Figures 2 and 8, C _{RL} =15pF S2 Closed	80	150	ns
circuit off time	t _{SHDN}		50	300	ns
Driver Enable from Standby	t _{DZH(SHDN)}	Figures 4 and 6, C _L =100pF S2		200	ns



to Output High		Closed			
from standby to output low driver enable	t _{DZL(SHDN)}	Figures 4 and 6, C _L =100pF S1 Closed		200	ns
Receiver Enable from Standby to Output High	t _{RZH(SHDN)}	Figures 2 and 8, C _{RL} =15pF S2 Closed		300	ns
Receiver Enable from Standby to Output Low	t _{RZL(SHDN)}	Figures 2 and 8, C _{RL} =15pF S1 Closed		300	ns

test circuit

www.belling.com.cn Page9 V1.1

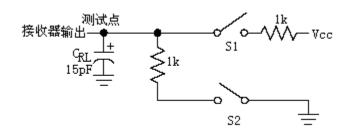


Figure 2: Receiver Enable/Disable Timing Testload

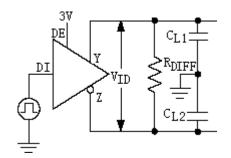


图 3: Driver Timing Test Circuit

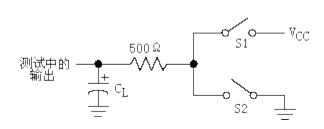


图 4: Driver Enable/Disable Timing Test Load

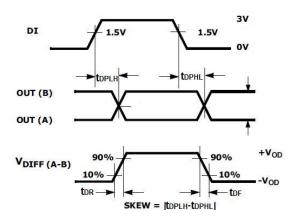


图 5: Driver Propagation Delays

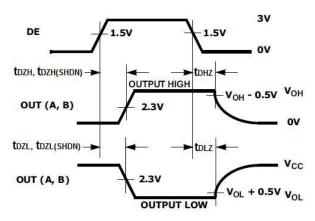


图 6: Driver Enable and Disable Times

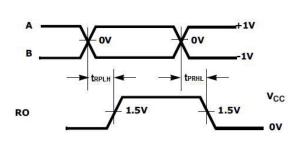


Figure 7: Receiver Propagation Delays

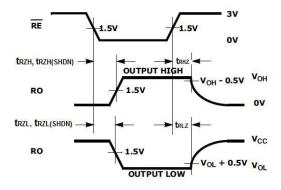
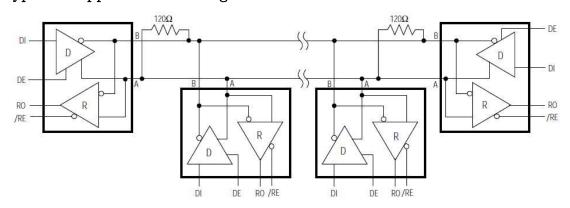
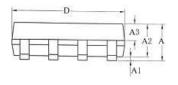
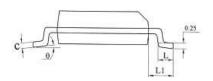


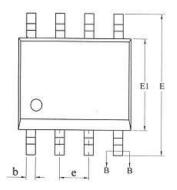
Figure 8: Receiver Enable and Disable Times

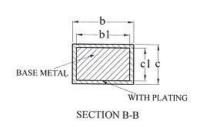
Figure 9: Receiver Propagation Delay Test Circuit

Typical Application Diagram


Figure 10 Typical half-duplex RS-485 network


www.belling.com.cn Page11 V1.1



Package size (SOP8)

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
Α	22	_	1.77	
Al	0.08	0.18	0.28	
A2	1.20	1.40	1.60	
A3	0.55	0.65	0.75	
ь	0.39	2225	0.48	
bl	0.38	0.41	0.43	
c	0.21	_	0.26	
c1	0.19	0.20	0.21	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
e	1.27BSC			
L	0.50	0.65	0.80	
LI	1.05BSC			
0	0		8°	