

BL0939

内置时钟免校准计量芯片

BL0939 datasheet

BL0939 Calibration-

Free Metering

Chip Data

Sheet

Version update

BL0939

instructions

Vers	date	content	Revised
ion			by
V1.0	2018/06/07	create	Liao
			Kang, HCJ
V1.1	2019/12/25	Errata	Liao
			Kang, HCJ
V1.2	2020/9/7	Errata	Liao
			Kang, HCJ

Table of contents

Ver	sion upo	date instructions2
1	Product	Brief 5
	1.1	Function Introduction5
	1.2	Main Features
	1.3	System Block Diagram6
	1.4	Package and Pin Description7
	1.5	Register List9
	1.6	Special Register Description 10
	1.6.	1 USER MODE SELECT REGISTER 10
	1.6.	2 Temperature Mode Control Register 11
	1.7	Performance indicators 12
	1.7.	1 Electrical parameter performance 12
	1.7.	2 Limit Range
2	Functio	nal description
	2.1	Current and voltage transient waveform measurement14
	2.2	Active power
	2.3	Active Power Offset Calibration 15
	2.4	Active power anti creep 16
	2.5	Energy Metering
	2.6	RMS value of $\ldots \ldots current and voltage 17$
	2.7	Current Voltage RMS Offset Calibration 19
	2.8	Leakage / overcurrent detection 19
	2.9	Phase Angle Calculation 21

BL0939 内置时钟免校准计量芯片

	2.10	Zero	-crossing detection
	2.11	Ther	mometry
3	Communio	catio	on interface
	3.1	SPI	25
	3.1.	1	Working mode
	3.1.	2	frame structure
	3.1.	3	Write Operation Timing
	3.1.4	4	Read Operation Timing
	3.1.	5	SPI Interface Fault Tolerance Mechanism27
	3.2	UAR	Т
	3.2.	1	Overview
	3.2.	2	Description
	3.2.	3	Each byte format
	3.2.	4	Write Timing
	3.2.	5	Read Timing
	3.2.	6	Packet send mode
	3.2.	7	UART Interface Protection Mechanism31
4	Order In	nform	mation
5	packages	s	
	5.1	SOP1	16L32
	5.2	SSOP	220L

1 Product description

1.1 Function introduction

BL0939 is a calibration-free energy metering chip with a built-in clock. It is suitable for applications such as single-phase multi-function energy meters, smart sockets, smart home appliances, and electric bicycle charging piles. It has a high cost performance.

BL0939

 $BL0939 \mbox{ integrates } 3 \mbox{ high- precision } Sigma-Delta \mbox{ ADCs} \mbox{, which can measure } 2 \mbox{ currents and } 1 \mbox{ voltage at the same time.}$

BL0939 can measure current, voltage RMS, active power, active energy and other parameters, and can output fast current RMS (for leakage monitoring or overcurrent protection), as well as temperature detection, waveform output and other functions, output through UART/SPI interface The data can fully meet the needs of smart sockets, smart home appliances, single-phase multi-functional electric energy meters, electric bicycle charging piles, and big data collection of electricity consumption information.

BL0939 has a patented anti-creep design, combined with a reasonable external hardware design, it can ensure that the noise power is not included in the energy pulse when there is no current.

1.2 main feature

- Three independent Sigma-Delta ADCs for measuring two currents and one voltage.
- RMS current range (10mA~35A) @1mohm
- Active energy (**1w~7700w**) @1mohm@220V
- Can output current, voltage RMS, fast current RMS, active power, current and voltage waveform phase angle
- batch factory gain error is less than 1%, and the external components can be exempted from calibration if they meet certain conditions
- Both current channels have leakage / overcurrent monitoring function, monitoring threshold and response time can be set
- Voltage zero-crossing signal output
- Built-in waveform register, which can output waveform data for load type analysis
- Integrated temperature sensor to meet the needs of product over-temperature monitoring, high-current node preset temperature alarm, ambient temperature measurement, etc.

integr Fastest Rate Support 900KHz / U A RT 4800 bp s communication method, U A RT Support ated SP multi-chip communication with address (SSOP20L (

BL0939

内置时钟免校准计量芯片

- packag
- e)
- \bullet Internal power down monitoring, below $2.7V\,,$ the chip enters the reset state.
- Built-in **1.218V** reference voltage source
- Built-in oscillation circuit, the clock is about 4MHz
- Chip single working power supply 3.3V, low power consumption 10mW (typical value)
- SSOP20L/SOP16L encapsulation

1.3 System Block Diagram

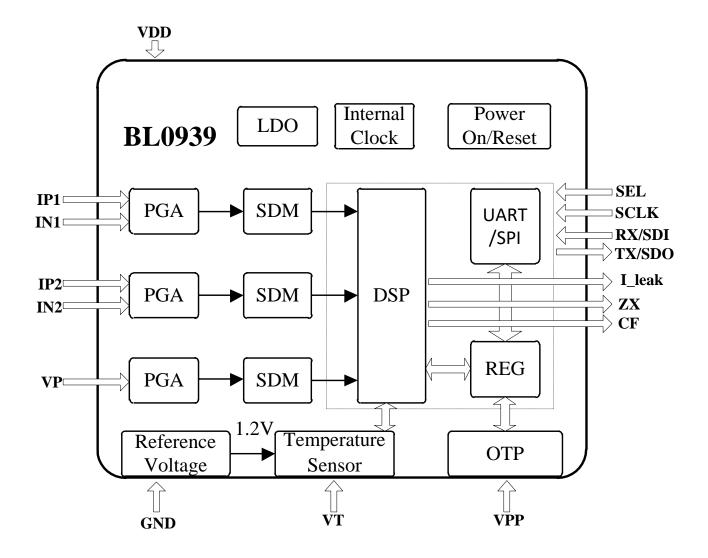
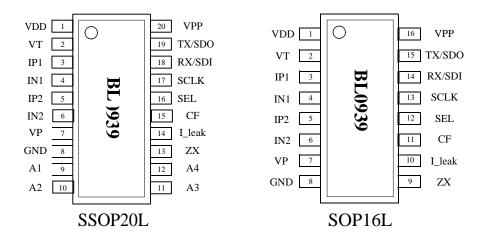



Figure 1

1.4 Package and Pin Description

The BL0939 is available in two packages.

BL0939

picture 2

pictures 3

Pin Description (SSOP20L)

pin	symbo	illus
numbe	I	trat
r		е
1	VDD	Power supply (+3.3V)
2	VT	External temperature sensor signal input
3,4	IP1, IN1	Analog input of the current A channel, the maximum differential voltage of the pins is $\pm 50 \text{mV}$ (35mV rms)
5,6	IP2, IN2	Analog input of current channel B, the maximum differential voltage of the pins is $\pm 50 \text{mV}$ (35mV rms)
7	VP	Voltage signal positive input terminal, maximum differential voltage ± 100 mV (70mV rms)
8	GND	chip ground
9	A1	The address setting pin of the chip, in UART multi-chip
10	A2	communication mode, is used to set the address of the chip,
11	A3	A4/A3/A2/A1 binary code (0000^1111) , can set the address
12	A4	$0^{\sim}15$; inside the pin is Pull-down resistor, if it is
		suspended, it is 0 level, and the pin is directly connected to
		VDD , it is high level . Matches the device address in the UART
		communication protocol
13	ZX	Voltage zero-crossing indication
14	I_leak	Leakage/overcurrent alarm output of current B channel
15	CF	Energy pulse output, see the description of the MODE register for the multiplexing function

BL0939 内置时钟免校准计量芯片

16	SEL	UART/SPI Communication mode selection (0: UART 1:						
		SPI), internal pull- down resistor,						
		Floating is O level (UART) , and the pin is directly connected						
		to VDD to be high level (SPI)						
17	SCLK	SPI mode clock input; in UART communication mode, it can						
		be suspended						
18	RX/SDI	UART/SPI multiplexing pin, UART RX/SPI DIN						
19	TX/SDO	UART/SPI multiplexing pin, UART TX/SPI DOUT, requires an						
		external pull-up resistor						
20	VPP	Keep it in the air						

Pin Description (SOP16L)

pin	symbol	illus						
numb		trat						
er		е						
1	VDD	Power supply (+3.3V)						
2	VT	External temperature sensor signal input						
3, 4	IP1, IN1	Analog input of the current A channel, the maximum differential voltage of the pins is \pm 50mV (35mV rms)						
5,6	IP2, IN2	Analog input of the current B channel, the maximum differential voltage of the pins is \pm 50mV (35mV rms)						
7	VP	Voltage signal positive input terminal, maximum differential voltage ± 100 mV (70mV rms)						
8	GND	chip ground						
9	ZX	Voltage zero-crossing indication						
10	I_leak	Leakage/overcurrent alarm output of current B channel						
11	CF	Energy pulse output, see the description of the MODE register for the multiplexing function						
12	SEL	UART/SPI Communication mode selection (0: UART 1: SPI), internal pull- down resistor , Floating is 0 level (UART) , and the pin is directly connected to VDD to be high level (SPI)						
13	SCLK	SPI mode clock input, in UART communication mode, just leave it floating						
14	RX/SDI	UART/SPI multiplexing pin, UART RX/SPI DIN						
15	TX/SDO	UART/SPI multiplexing pin, UART TX/SPI DOUT, requires an external pull-up resistor						
16	VPP	Keep it in the air						

1.5 register list

add ress	name	exter nal read/	intern al read/	bit widt	Default s	des crib
		write	write	h		е
				Electri	c paramete	er
				registe	er (read onl	y)
0x00	IA_FAST_RMS	R	W	twen	0x000000	A channel fast rms, unsigned
				ty		
0.01		D		four	0.000000	
0x01	IA_WAVE	R	W	20	0x000000	A channel current waveform register, signed
0x02	IB_WAVE	R	W	20	0x000000	B channel current waveform
						register, signed
0x03	V_WAVE	R	W	20	0x000000	Voltage waveform register, signed
0x04	IA_RMS	R	W	twen	0x000000	A channel current RMS register,
				ty		unsigned
0.05		D		four	0.00000	
0x05	IB_RMS	R	W	twen	0x000000	B channel current RMS register,
				ty four		unsigned
0x06	V RMS	R	W	twen	0x000000	Voltage rms register, unsigned
0,000	V_NNO	π	"	ty	0X000000	vortage rus register, unsigned
				four		
0x07	IB_FAST_RMS	R	W	twen	0x000000	B channel fast rms, unsigned
				ty		
				four		
0x08	A_WATT	R	W	twen	0x000000	A channel active power register,
				ty		signed
				four		
0x09	B_WATT	R	W	twen	0x000000	B channel active power register,
				ty four		signed
0x0A	CFA_CNT	R	W	twen	0x000000	A channel active energy pulse
UXUA	CI'A_CIVI	K	"	ty	0x000000	count, unsigned
				four		
0x0B	CFB_CNT	R	W	twen	0x000000	B channel active energy pulse
	—			ty		count, unsigned
				four		
0x0C	A_CORNER	R	W	16	0x0000	A channel current voltage
						waveform phase angle register
0x0D	B_CORNER	R	W	16	0x0000	B channel current voltage
						waveform phase angle register
0x0E	TPS1 Belling Corp., Ltd.	R	W	10	0x000	Internal temperature detection

BL0939

Shanghai Belling Corp., Ltd.

BL0939

内置时钟免校准计量芯片

						register, unsigned				
0x0F	TPS2	R	W	10	0x000	External temperature detection register, unsigned				
	I			User	operation					
	register (read and									
write)										
0x10	IA_FAST_RMS _CTRL	R/W	R	16	0xFFFF	A channel fast rms control register				
0x13	IA_RMSOS	R/W	R	8	0x00	Current A channel RMS small signal correction register				
0x14	IB_RMSOS	R/W	R	8	0x00	Current B channel RMS small signal correction register				
0x15	A_WATTOS	R/W	R	8	0x00	A channel active power small signal correction register				
0x16	B_WATTOS	R/W	R	8	0x00	B channel active power small signal correction register				
0x17	WA_CREEP	R/W	R	8	0x0B	Active power anti-passage register				
0x18	MODE	R/W	R	16	0x0000	User Mode Select Register				
0x19	SOFT_RESET	R/W	R	twen	0x000000	When writing Ox5A5A5A, the user				
				ty four		area register is reset				
Ox1A	USR_WRPROT	R/W	R	8	0x00	User write-protect setting register. After writing 0x55 , use The user operation register can be written; write other values,				
						the user operation register area cannot be written				
0x1B	TPS_CTRL	R/W	R	16	0x07FF	Temperature Mode Control Register				
0x1C	TPS2_A	R/W	R	8	0x0000	External Temperature Sensor Gain Coefficient Correction Register				
0x1D	TPS2_B	R/W	R	8	0x0000	External Temperature Sensor Offset Coefficient Correction Register				
Ox1E	IB_FAST_RMS _CTRL	R/W	R	16	0xFFFF	B channel fast rms control register				

1.6 Special Register Description

1.6.1 User Mode Select Register

0x18	MODE		Operating Mode Register			
No.	name	default value	otion			
[7:0]	reserved	0b0000000	reser	rve		
8	RMS_UPDATE_SEL	0b0	RMS register refresh time selection choose	0: 400ms 1: 800ms		
9	AC_FREQ_SEL	0b0	AC frequency selection	0: 50Hz 1: 60Hz		
10	reserved	0b0	reserve			
11	CF_SEL	0b0	CF pin output energy pulse selection	0: A channel 1: B channel		
12	CF_UNABLE	0Ь0	CF pin output function selection	0: energy pulse, MODE[11] The configuration is valid 1: alarm function, TPS_CTRL[14] is configured with effect		
[15:13]	reserved	0b000	reser	rve		

1.6.2 Temperature Mode Control Register

0x1B	TPS_CTRL	Temperature Mod	le Control Register	
No.	name	default value	description	
			[15] Temperature measurement switch, default ObO, open Start measuring temperature	0: open 1: off
0x1B	TPS_CTRL	0x07FF	[14] Alarm switch, default ObO,	0: Temperature alarm is on 1 : Current A channel overcurrent / leakage report alarm on
			[13:12] Temperature measurement selection, default Ob00 automatic temperature measurement	00: automatic temperature measurement 01: Same as 00 10: Internal temperature measurement 11: External temperature measurement
			<pre>[11:10] Temperature measurement time interval selection, default 0b01 100ms [9:0] External temperature measurement alarm threshold setting Set, the default setting is 0x3FF, no alarm</pre>	00: 50ms 01: 100ms 10: 200ms 11: 400ms The TPS2 register value is greater than or equal to the report Alarm value, generate an alarm

1.7 Performance

1.7.1 Electrical parameter performance

(VDD = 3.3V, GND = 0V, on-chip reference voltage source, built-in crystal oscillator, 25 °C, electric energy is measured through CF output)

BL0939

symbol	Measuremen t conditions	the smalles t	typical	max imu m	unit
VDD		3.0		3.6	V
Iop	VDD=3.3V		3		mA
	4000:1 input drive state range				
	35A~100mA output Into @ 1mohm sampling resistor		0.2		%
	100mA [~] 50mA input@lmohm sampling resistance		0.4		%
	50mA~10mA input Into @ 1mohm sampling resistor		0.6		%
	35A~100mA input@1mohm sampling resistance		0.2		%
	100mA~50mA input@lmohm sampling resistance		2		%
FOIL	50mA~10mA input@1mohm sampling resistance	10	6	10	% M
	VDD	VDDVDDIopVDD=3. 3V4000:1 input drive state range35A~100mA outputInto @ 1mohm sampling resistor100mA~50mA input @ 1mohm sampling resistance50mA~10mA inputInto @ 1mohm sampling resistance50mA~10mA inputInto @ 1mohm sampling resistance100mA~50mA input @ 1mohm sampling resistor100mA~50mA inputInto @ 1mohm sampling resistor100mA~10mA input input @ 1mohm sampling resistance100mA~50mA input @ 1mohm sampling resistance100mA~50mA input @ 1mohm sampling resistance50mA~10mA input @ 1mohm sampling resistance50mA~10mA input @ 1mohm sampling resistance50mA~10mA input @ 1mohm sampling resistance50mA~10mA input @ 1mohm sampling resistance	t conditionssmalles tVDD3.0IopVDD=3.3V4000:1 input drive4000:1state range35Å~100mAoutput1Into @ 1mohm sampling resistor100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistor100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance50mA~10mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance50mA~10mAinput @ 1mohm sampling resistance100mA~50mAinput @ 1mohm sampling resistance50mA~10mAinput @ 1mohm sampling resistance50mA~10mA<	t conditionssmalles tVDD3.0IopVDD=3.3V4000:1 input drive34000:1 input drive34000:1 input drive0.2state range0.2Into @ 1mohm sampling resistor0.2Into @ 1mohm sampling resistor0.4Sampling resistance0.4Sampling resistance0.4Sampling resistance0.6Into @ 1mohm sampling resistance0.6Into @ 1mohm sampling resistance0.6Into @ 1mohm sampling resistance0.250mA^10mA input @ 1mohm input @ 1mohm0.235A^100mA input @ 1mohm0.2sampling resistance0.2Sampling resistance2Sampling resistance2Sampling resistance2Sampling resistance2Sampling resistance6Sampling resistance6Sampling resistance6	t conditionssmalles timu mVDD3.03.6IopVDD=3.3V34000:1 input drive34000:1 input drivestate range35Å~100mA output0.2Into @ 1mohm sampling resistor0.2Into @ 1mohm sampling resistor0.4100mA~50mA input @ 1mohm sampling resistance0.450mA~10mA input0.6Into @ 1mohm sampling resistance0.6100mA~50mA input0.6100mA~50mA input0.6100mA~50mA input0.235A~100mA input0.2100mA~50mA input @ 1mohm sampling resistance0.235A~100mA input @ 1mohm sampling resistance0.250mA~10mA input @ 1mohm input @ 1mohm0.250mA~10mA input @ 1mohm sampling resistance250mA~10mA input @ 1mohm sampling resistance250mA~10mA input @ 1mohm sampling resistance650mA~10mA input @ 1mohm resistance6

Shanghai Belling Corp., Ltd.

BL0939

内置时钟免校准计量芯片

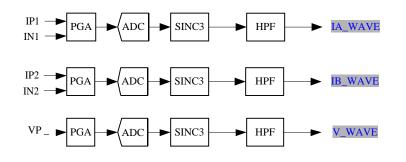
1	time	60Hz	cycle/	8.3		33	М
			half cycle				
Ze	ero-crossing signal output delay				571		u
(The phase angle between channels causes measurement errors	PF08err	Phase lead 37 (PF=0.8)			0.5	%
	Poor (capacitive)						
C	The phase angle between channels causes measurement	PF05err	Phase lag 60 (PF=0.5)			0.5	%
F	errors Poor (sensibility)						
	AC Power Supply Rejection (Output Frequency	ACPSRR	IP/N=100mV			0.1	%
	rate amplitude change)						
D	C supply rejection (output frequency	DCPSRR	VP/N=100mV			0.1	%
	rate amplitude change)						

Measurement items	symbol	Measuremen t conditions	the smalles t	typical	max imu m	unit
Analog input level (current)		Current differential input (peak)			50	mV
Analog input level (voltage)		Voltage differential input (peak)			200	mV
Analog input impedance				370		kΩ
SEL pull-down resistor		SEL (pull down)		56.9		kΩ
Analog input bandwidth		(-3dB)		3.5		kHz
Internal Voltage Reference	Vref			1.218		V
logic input high		VDD=3. $3V \pm 5\%$	2.6			V
Logic input low		VDD=3. $3V \pm 5\%$			0.8	V
logic output high		VDD=3.3V±5% IOH=5mA	VDD-0.5			V
Logic output low level		VDD=3.3V±5% IOL=5mA			0.5	V

1.7.2 limit range

(**T = 25** ° C)

project	symbol	extremum	unit
Power supply voltage VDD	VDD	-0.3 ~ +4	V
Analog input voltage (relative to GND)	IP1, IP2, VP	$-4 \sim +4$	V
Digital input voltage (relative to GND)	A1 [~] A4, UART_SEL, RX/SDI	-0.3 ~ VDD+0.3	V
Digital output voltage (relative to GND)	CF, I_Leak, TX/SDO	-0.3 ~ VDD+0.3	V
Operating temperature	Topr	-40 $^{\sim}$ $+105$	°C
storage temperature	Tstr	-55 $^{\sim}$ $+150$	°C


2 Functional description

BL0939 is mainly divided into analog signal processing and digital signal processing. The analog part mainly includes three-channel PGA, three-channel Sigma-Delta ADC, built-in clock (internal clock), power on/reset monitoring (Power on/reset), temperature detection (temperature

BL0939

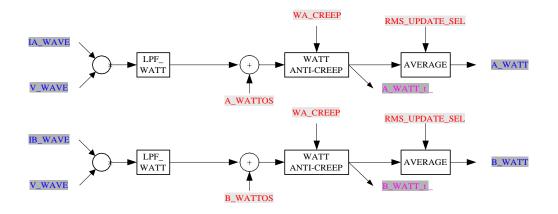
sensor), LDO and other related analog modules, and the digital part is a digital signal
processing module (DSP).

2.1 Current and voltage transient waveform measurement

As shown in the figure above, two channels of current and one channel of voltage pass through the analog module amplifier (PGA) and high-precision analog-to-digital conversion (ADC) respectively to obtain three channels of 1bit PDM for the digital module, and the digital module passes through the down-sampling filter (SINC3), Qualcomm Filter (HPF), channel offset correction and other modules to obtain the required current waveform data and voltage waveform data (IA_WAVE, IB_WAVE, V_WAVE).

BL0939 has three high-precision ADCs, and the current adopts double-ended differential signal input: A current channel IP1/IN1, B current channel IP2/IN2, voltage channel VP.

The collected load current and voltage waveform data are updated at a rate of 7.8k, and each sampled data is a 24bit signed number, which is stored in the waveform register (IA_WAVE, IB_WAVE, V_WAVE) respectively, and the SPI rate configuration is greater than 375Kbps, which


can be read continuously Waveform value for one channel.

Note: The register is **24bit**, if the number of digits is insufficient, the high bits are filled with zeros;

addre ss	name	exter nal read/ write	intern al read/w rite	bit width	Defaults	describe
0x01	IA_WAVE	R	W	twen ty four	0x000000	A channel current waveform register
0x02	IB_WAVE	R	W	twen ty four	0x000000	B channel current waveform register
0x03	V_WAVE	R	W	twen ty four	0x000000	Voltage Waveform Register

2.2 active power

addre ss	name	extern al read/w rite	intern al read/w rite	bit width	Defaults	describe
0x08	A_WATT	R	W	twen ty four	0x000000	A channel active register
0x09	B_WATT	R	W	twen ty four	0x000000	B channel active register
-	Active power calculation formula : A/B_WATT =				A) *V(V) os(φ) ref ²	

BL0939

Among them, I(A), V(V) is the effective value (mV) of the channel pin input signal, φ is the phase angle of the I(A) and V(V) AC signals, Vref is the built-in reference voltage, typical value is 1.218V.

These two registers indicate whether the current active power is positive work or negative work, Bit[23] is the sign bit, Bit[23]=0, the current power is positive work, Bit[23]=1, the current power is negative work, in complement form.

2.3 Active Power Offset Calibration

 $BL0939 \mbox{ contains two 8 -bit active power offset correction registers (A_WATTOS , B_WATTOS), the default value is 00H . They use the data in 2 's complement form to eliminate the deviation of active power when measuring electric energy, and Bit[7] is the sign bit. The Shanghai Belling Corp., Ltd. 20/35$

deviation here may be due to board-level noise or crosstalk. Offset correction can make the value in the active power register close to 0 at no load .

BL0939

addre ss	name	extern al read/w rite	inter nal read/ write	bit width	Default s	describe
0x15	A_WATTOS	R/W	R	8	0x00	A channel power small signal correction register
0x16	B_WATTOS	R/W	R	8	0x00	B channel power small signal correction register

$WATTOS = \frac{WATT - WATT0}{8 \times 3.05172}$

 WATT is the active power after correction, and $\mathsf{WATT0}$ is the active power before correction.

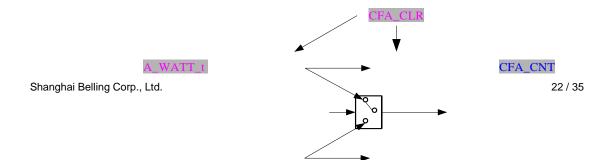
2.4 Active power anti-creep

BL0939 has a patented power anti-submersion function, which ensures that the board-level noise power will not accumulate power when there is no current input.

BL0939

active anti-creep threshold register (WA_CREEP), is an 8bit unsigned number, and the default is OBH. The corresponding relationship between this value and the active power register value is shown in the following formula. When the absolute value of the input active power signal is less than this value, the output active power is set to O. This can make the value output to the active power register be O in the case of no load, even if there is a small noise signal, and the electric energy will not accumulate.

addre ss	name	extern al read/w rite	inter nal read/ write	bit width	Default s	describe
0x17	WA_CREEP	R/W	R	8	0x0B	Active power anti-passage register


set according to the value of the power register $A_WATT/B_WATT, and$ their corresponding relationship

 $WA_CREEP = \frac{WATT}{3.0517578125*8}$

Note: When the channel is in the anti-submarine state, the effective value of the current of the channel is not measured, and it is also cut to **0**.

2.5 Energy Metering

BL0939 provides two-channel energy pulse metering. The active instantaneous power of the two channels is integrated according to time to obtain active energy, and the calibration pulse CF is output in proportion . The CFA_CNT and CFB_CNT registers store the number of output energy pulse CF, as shown in the figure below Show.

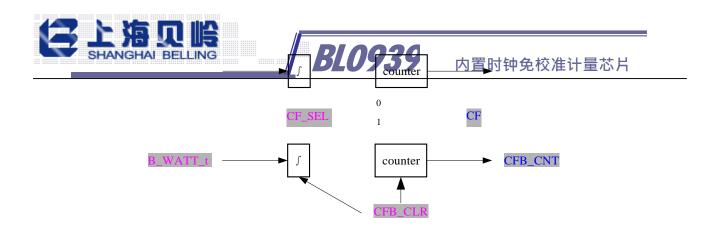


Figure 6

0x18	MODE	Operating Mode Register					
No.	name	default value	description				
10	reserved	0b0	res	erve			
11	CF_SEL	0b0	CF pin output energy pulse pass Road selection	0: A channel 1: B channel			
12	CF_UNABLE	0b0	CF pin output selection	<pre>0: Energy pulse MODE[11] configuration is valid 1: Temperature measurement/leakage</pre>			
				alarm TPS[14] configuration is valid			

BL0939

First set MODE[12]=0 to select the CF pin to output energy pulse, and then set MODE[11] to choose to output the energy pulse of channel A or channel B.

addre	name	exter nal	intern al	bit	Defaults	describe
SS		read/ write	read/w rite	width		
OxOA	CFA_CNT	R	W	twen	0x000000	A channel active energy pulse
				ty		count, unsigned
				four		
0x0B	CFB_CNT	R	W	twen	0x000000	B channel active energy pulse
				ty		count, unsigned
				four		

The counting of active energy pulses is applied to the applied energy, and the results are stored in two registers, CFA_CNT and CFB_CNT, and can also be accessed through I/O interrupt directly counts the number of pulses from the CF pin. When the period of CF is less than 180ms, it is a pulse with a 50% duty cycle, which is greater than or equal to 180ms, the high level fixed pulse width is 90ms.

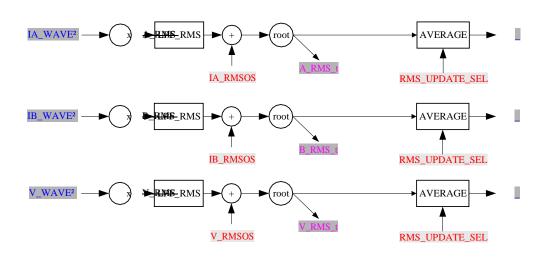
Note: CFA_CNT and CFB_CNT registers are the algebraic and

accumulation methods of electric energy pulses, that is, positive power

is added and negative power is subtracted.

The accumulation time for each CF pulse $t_{\mbox{ CF}}$ =

Where WATT is the corresponding active power register value (A_WATT, B_WATT).


BL0939

2.6 RMS value of current and voltage

WATT

The effective value of the three channels, as shown in the figure below, passes through the square circuit (X^2), low-pass filter (LPF_RMS), and root circuit (ROOT) to obtain the instantaneous value RMS_t of the effective value, and then obtains the average of the three channels by averaging values (A_RMS, B_RMS, and V_RMS).

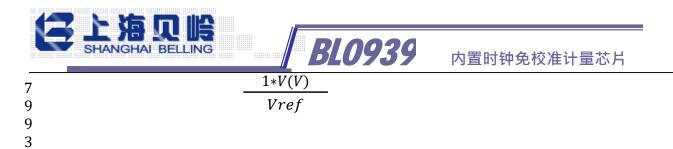
BL0939

Figure 7

addre ss	name	extern al read/w rite	intern al read/w rite	bit width	Defaults	describe
0x04	IA_RMS	R	W	twen ty four	0x000000	A channel current RMS register, unsigned
0x05	IB_RMS	R	W	twen ty four	0x000000	B channel current RMS register, unsigned
0x06	V_RMS	R	W	twen ty four	0x000000	Voltage rms register, unsigned

0x18	MODE	Operating Mode Register					
No.	name	default value description					
8	RMS_UPDATE_SEL	0b0	RMS update speed selection	0: 400ms 1: 800ms			

Set MODE[8].RMS_UPDAT_SEL, you can choose the average refresh time of the effective value to be 400ms or 800ms, and the default is 400ms. When a current channel is in the anti-submarine state, the effective value of the current channel is zero.


324004 * I(A)

Vref

Current RMS conversion formula: IA/B_RMS =

Voltage RMS conversion formula: V_RMS =

Shanghai Belling Corp., Ltd.

 Vref is the reference voltage, the typical value is 1.218V.

Note: I(A) is the input signal (mV) between IP1 and IN1 pins , V(V) is the input signal (mV) of VP pin .

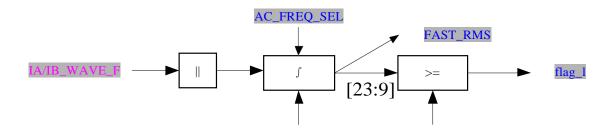
2.7 Current Voltage RMS Offset Calibration

BL0939 contains two 8 -bit RMS offset registers (IA_RMSOS and IB_RMSOS), their default value is OOH , and they use 2 's complement code form data to adjust the deviation in RMS calculation. This deviation may come from input noise. Offset correction can make the value in the rms register close to Oatnoload.

BL0939

addre ss	name	extern al read/w rite	inter nal read/ write	bit width	Default s	describe
0x13	IA_RMSOS	R/W	R	8	0x00	IA current RMS small signal
						correction register
0x14	IB_RMSOS	R/W	R	8	0x00	IB Current RMS Small Signal
						Correction Register

Calibration formula $\frac{RMSOS}{9.3132 \times 2^{15}} = \frac{RMS^2 - RMSO^2}{2}$


Here $\mathsf{RMSO}\,\mathsf{is}$ the effective value before correction, and $\mathsf{RMS}\,\mathsf{is}$ the effective value after correction.

2.8 Leakage / overcurrent detection

and B of BL0939 have fast RMS registers, which can detect half cycle or cycle RMS. This function can be used for leakage or overcurrent detection. For the source of the leakage waveform I_WAVE , refer to the channel waveform block diagram. After taking the absolute value of IA/IB_WAVE_F , the half cycle or cycle time is accumulated, which is selected by FAST_RMS_CTRL[15]. The default value is 1 to select cycle accumulation, and the response time is up to 40ms (50Hz) or 33mS

(60Hz), note that the jump of the x_FAST_RMS register is relatively large when the half cycle is accumulated . To distinguish the half cycle time of 50Hz and 60Hz

(AC_FREQ_SEL).

Shanghai Belling Corp., Ltd.

[15]

内置时钟免校准计量芯片

FAST_RMS_CTRL [14:0]

Figure 8

BL0939 内置时钟免校准计量芯片

addre ss	name	extern al read/w rite	inter nal read/ write	bit width	Default s	desc ribe
0x10	IA_FAST_RMS_CTRL	R/W	R	16	0xFFFF	A channel fast rms control
						register
Ox1E	IB_FAST_RMS_CTRL	R/W	R	16	0xFFFF	B channel fast rms control
						register

Through two fast RMS control registers, $IA_FAST_RMS_CTRL$ and $IB_FAST_RMS_CTRL$, the refresh time can be selected as half cycle or cycle, and the fast RMS threshold (that is, leakage or overcurrent threshold) can be set .

		Channel Fast RMS Register				
No.	name	default value description				
0x10	IA_FAST_RMS_CTRL	0xFFFF	[15] A channel fast RMS register refresh time [14:0] A channel fast RMS threshold	0: half cycle 1: Cycle		
0x1E	IB_FAST_RMS_CTRL	OxFFFF	[15] B channel fast RMS register refresh time [14:0] B channel fast RMS threshold	0: half cycle 1: Cycle		

0x18	MODE	Operating Mode				
		Register				
No.	name	default value description				
9	AC EDEO CEL	0b0	AC frequency coloction	0: 50Hz		
9	AC_FREQ_SEL	000	AC frequency selection	1: 60Hz		

Set AC frequency by $\ensuremath{\mathsf{MODE[9]}}$.

addre	name	exter nal	inter nal	bit wid	Defaults	describe
SS		read/	read/	th		
		write	write			
0x00	IA_FAST_RMS	R	W	tw	0x000000	A channel fast rms,
				en		unsigned
				ty		
				fo		
				ur		
0x07	IB_FAST_RMS	R	W	tw	0x000000	B channel fast rms,
				en		unsigned

Shanghai Belling Corp., Ltd.

	DIADO	内置时钟免校准计量芯片	
	ty		
	fo		
	ur		

24 -bit unsigned fast effective value register according to the cycle or half cycle , compare Bit[23:9] of the FAST_RMS register with the leakage / overcurrent threshold FAST_RMS_CTRL [14:0] , if it is greater than or equal to the set threshold, the leakage / Overcurrent alarm output indicates that the pin outputs a high level.

 $B\ leakage\ /\ overcurrent\ alarm\ output\ indication\ pin\ is\ I_leak$, which can be output directly without configuration.

leakage /overcurrent alarm output indication pin of channel $A\,is\,CF\,,$ you need to set $MODE[12]{=}1\,first\,,$ and then set <code>TPS_CTRL[14]=1.</code>

0x18	MODE	Operating Mode Register				
No.	name	default value				
12	CF_UNABLE	0b0	CF pin output selection	0: Energy pulse MODE[11] configuration is valid 1: Temperature measurement/leakage alarm TPS[14] configuration is valid		

0x1B	TPS_CTRL	Temperature Mode				
		Control Register				
No.	name	default value description				
				0: Temperature alarm is on		
14	ALERT_CTRL	0b0	alarm switch	1: Current A channel overcurrent/leakage alarm is on		

BL0939

Since the fast effective value is updated by cycle or half cycle, the response time of $I_{\text{leak is up to 2}}$ cycles or 2 half cycles.

2.9 Phase angle calculation

BL0939 can be used for phase angle measurement, and the phase angle CORNER_A/CORNER_B between A/B two-phase current and voltage indicates the reactive quadrant. The calculation is obtained by the positive zero-crossing time difference of the current and the voltage. When the current is positively zero-crossing, it is updated to the register CORNER_A/CORNER_B, and each register is a 16-bit unsigned number.

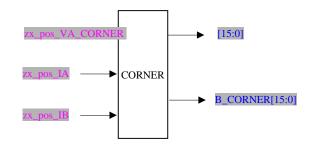


Figure 9

addre ss	name	extern al read/w rite	inter nal read/ write	bit width	Default s	describe
0x0C	A_CORNER	R	W	16	0x0000	A channel current voltage waveform phase angle register
0x0D	B_CORNER	R	W	16	0x0000	B channel current voltage waveform phase angle register

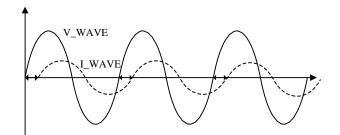


Figure 10

BL0939

Phase angle conversion formula: unit is radian $2*pi*A/B_CORNER* f_c f_0$

Among them , f_c is the measurement frequency of the AC signal source, the default is 50Hz, f_0 is the sampling frequency, the typical value is 1MHz.

2.10 Zero-crossing detection

BL0939 provides voltage zero-crossing detection, and the zero-crossing signal is directly output from the pin ZX.ZX is 0, which means the positive half cycle of the waveform, and ZX is 1, which means the negative half cycle of the waveform. The time delay with the actual input signal is 570us.

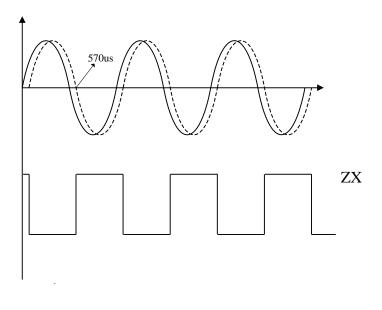


Figure 11

2.11 Thermometer

BL0939 provides internal temperature measurement and off-chip temperature measurement.

BL0939

When the external temperature is measured, the optional output alarm indication, when the alarm function is turned on, the CF pin can be reused as an output alarm signal, when TPS2 is greater than or equal to the alarm threshold, the CF pin outputs a high level, and the temperature indication alarm. When the temperature value is lower than the alarm value or the alarm function is turned off, the alarm indication will be exited.

0x1B	TPS_CTRL	Temperature Mode Control Register					
No.	name	default value	on				
			[15] Temperature measurement switch, default ObO, open Start measur ing temper ature	0: open 1: off			
0x1B	TPS_CTRL	0x07FF	[14] Alarm switch, default ObO,	0: Temperature alarm is on 1: Current A channel overcurrent / Leakage alarm on			
			[13:12] Temperature measurement selection, default ObOO automatic temperature measurement	00: automatic temperature measurement 01: Same as 00 10: Internal temperature measurement 11: External temperature measurement			
			<pre>[11:10] Temperature measurement time interval selection, default 0b01 100ms [9:0] External temperature measurement alarm threshold setting</pre>	00: 50ms 01: 100ms 10: 200ms 11: 400ms			

set, the default setting is 0x3FF

First set MODE[12]=1, and then set TPS_CTRL[14]=0, the CF pin can be turned on to output an external temperature alarm indicator.

BL0939

0x18	MODE	Operating Mode					
			Register				
No.	name	default value	default value description				
12	CF_UNABLE	0b0	CF pin output selection	<pre>0: Energy pulse MODE[11] configuration is valid 1: Temperature measurement alarm TPS[14] configuration is valid</pre>			

External and internal temperature readings are stored in two registers, $\ensuremath{\mathsf{TPS1}}$ and $\ensuremath{\mathsf{TPS2}}$, respectively.

addre ss	name	extern al	nal	bit width	Default s	describe
~~		read/w	read/		~	
		rite	write			
0x0E	TPS1	R	W	10	0x0000	Internal temperature
						value register, unsigned
0x0F	TPS2	R	W	10	0x0000	External temperature
						value register, unsigned

Internal temperature measurement formula: Tx=(170/448)(TB/2-32)-45

TB is the TPS1 register value;

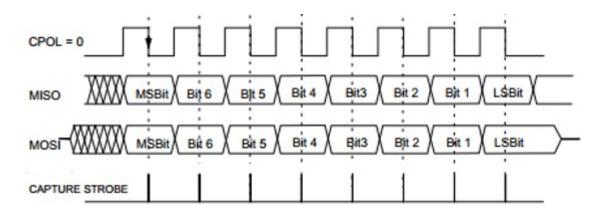
The external test temperature adopts SAR ADC, the maximum input signal of VT pin is 0.55*VDD (V), and the value of TPS2 register is the corresponding AD

BL0939

sampled value, full scale $1024\,,$

addre ss	name	extern al read/w rite	intern al read/w rite	bit width	Default s	describe
0x1C	TPS2_A	R/W	R	8	0x00	External Temperature Sensor Gain Coefficient A Correction Register
Ox1D	TPS2_B	R/W	R	8	0x00	External Temperature Sensor Bias Coefficient B Correction Register

3 Communication Interface


register data is sent in 3 bytes (24bit). For the register data less than 3 bytes, the unused bits are filled with 0, and 3 bytes are sent.

3.1 SPI

- Through the pin UART_SEL choose , with UART reuse
- ●●●����� mode
- \bullet $$\rm Half-duplex\ communication$, the communication rate can be configured , the maximum communication rate 900khz
- 8-bit data transfer, MSB First , LSB is behind
- ●☞光⊠ a clock polarity / phase (CPOL=0, CPHA=1)

3.1.1 Operating mode

The master device works in Mode1: CPOL=0, CPHA=1, that is, in the idle state, SCLK is at low level, and data transmission is at the first edge, that is, the transition of SCLK from low level to high level, So data sampling is on the falling edge, and data transmission is on the rising edge.

3.1.2 frame structure

In communication mode, first send 8bit identification byte (0x55) or (0xA5), (0x55) is the identification byte for read operation, (0xA5) is the identification byte for write

operation , and then send the register address byte to decide to access the register address (see BL0939 Register List) . The figure below shows the data transfer sequence for read and write operations, respectively. After one frame of data transmission is completed, BL0939 re-enters the communication mode. The number of SCLK pulses required for each read / write operation is 48 bits.

BL0939

There are two frame structures, which are described as follows:

1) Write operation frame

write frame OxA5	ADDR[7:0]	DATA_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]	
------------------	-----------	-------------	-------------	-------------	---------------	--

BL0939

Among them, the checksum byte CHECKSUM $\dot{s}((OxA5 + ADDR + DATA_H + DATA_M + DATA_L) & OxFF)$ and then reversed bit by bit.

2) Read operation frame

return data

DATA	_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]	
------	---------	-------------	-------------	---------------	--

Among them, the checksum byte CHECKSUM is((0x55+ADDR+DATA_H+DATA_M+DATA_L) & OxFF) and then reversed bit by bit. Note: The data is a fixed 3 bytes (the high byte is in front, the low byte is in the back, if the data valid byte is less than 3 bytes, the invalid bit is filled with 0)

3.1.3 Write Operation Timing

The serial write sequence is performed as follows. The frame identification byte {OxA5} indicates that the data communication operation is to write data, and ADDR is the address of the register that needs to write data. The MCU will prepare the data bits that need to be written into BL0939 before the falling edge of SCLK, and start shifting in the register data at the falling edge of the clock of SCLK. All remaining bits of the register data are also shifted left on the falling edge of this SCLK (Fig. 13).

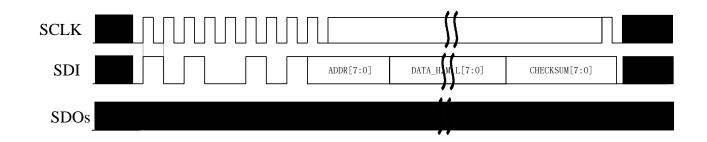


Figure 13

3.1.4 Read Operation Timing

During the data read operation of BL0939 , on the rising edge of SCLK , BL0939 outputs the corresponding data bit to the SDO logic output pin, and the SDO value remains unchanged during the next SCLK is 1 , that is, in the next On the falling edge, an external device can sample the SDO value. During the data read operation, the MCU must first send a read command frame.

BL093	内置时钟免校准计量芯片
SCLK	
SDOs	DATA_H,ML[7:0] CHECKSUM[7:0]

When BL0939 is in the communication mode, the frame identification byte {0x55} indicates
that the data communication operation is read data. followed by the bytes
ADDR is the address of the target register to be read. After the BL0939 receives the register
address, it starts to shift out the data in the register on the rising edge of SCLK (Figure 14).
All remaining bits of the register data are shifted out on subsequent SCLK rising edges.
Therefore, on the falling edge of SCLK, the external device can sample the output data of SPI.
Once the read operation is complete, the serial interface re-enters communication mode. At
this time,

SDO output goes into a high-impedance state on the falling edge of the last SCLK signal.

3.1.5 SPI Interface fault tolerance mechanism

1) The soft reset function of the SPI interface can reset the SPI interface independently by sending 6 bytes of 0xFF through the SPI interface.

Note: SPI communication does not support chip selection. If you choose a 20pin package, you need to connect A4A2 to ground and A3A1 to high level.

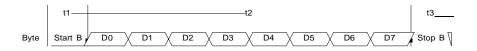
3.2 UART

3.2.1 overview

BL0939 can use UART communication. The UART interface only needs two low-

BL0939

speed optocouplers to realize isolated communication. Fixed baud rate


4800bps, N, 8, 1.5, working in slave mode, half-duplex communication.

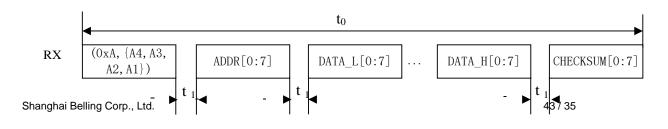
Both packages have UART communication, and the 20 pin package has a chip select address [A4 A3 A2 A1], and the device address 00~15 can be set.

3.2.2 describe

UART port settings: communication baud rate 4800bps, no parity, stop bit 1.5.

3.2.3 format per byte

Start bit low level duration t1=208us


Valid data bit time lasts t2=208*8=1664us

Stop bit high level duration t3=208us+104us

3.2.4 write timing

host UART write data sequence is shown in the figure below. The host first sends the command byte (OxA,{A4,A3,A2,A1}), and then needs to write the data register address (ADDR), and then sends the data byte (The low byte is in front, the high byte is in the back, and the valid data bytes are insufficient

 $\mathbf 3$ byte, invalid bits are filled with $\mathbf 0\,)$, and finally the checksum byte.

 $(0 \times A, \{A4, A3, A2, A1\})$ is the frame identification byte of the write operation, if [A4A1]=0101, the device address is 5, and the frame identification byte is 0xA5.

BL0939

ADDR is the internal register address of BL0939 corresponding to the write operation . The CHECKSUM byte is (((OxA,{A4,A3,A2,A1})+ADDR+Data_L+Data_M+Data_H) & OxFF) and then reversed bit by bit. Note: The device address of BL0939-SOP16L is 5, that is, the first byte is OxA5.

BL0939

3.2.5 read timing

host UART read data sequence is shown in the figure below, the host first sends the command byte $(0x5, \{A4, A3, A2, A1\})$, then sends the register address (ADDR) to be read, and then BL0939 sends the data byte in turn (The low byte is in front, the high byte is in the back, if the data valid byte is less than 3 bytes, the invalid bit is filled with 0), and the last checksum byte.

 $(0 \times 5, \{A4, A3, A2, A1\})$ is the frame identification byte of the read operation; if [A4A1] = 0101, the device address 5, the frame identification byte is 0×55 ; ADDR is the internal register address of BL0939 corresponding to the read operation; CHECKSUM The byte is

(((Ox5,{A4,A3,A2,A1})+ADDR+Data_L+Data_M+Data_H) & OxFF) and then reversed bit by bit;

Timing description

	illustrate	Min	type	Max	unit
t1	Interval time between MCU sending bytes	0		20	М
t2	Interval time from the end of MCU sending register address to BL0939 sending byte during read operation		72		u

BL0939 内置即

内置时钟免校准计量芯片

t3	Interframe time	0.5		u	
t4	Interval time between bytes sent by BL0939		116	u	

3.2.6 packet sending mode

Through the command " (0x5,{A4,A3,A2,A1}) + 0xAA", BL0939 will return a full power parameter packet. A total of 35 packets were returned

BL0939

bytes, 4800 bp s time cost 77 m s. The specific format is: Baotou (1 byte h ead → M ◆ □□ M ■ ◆ _ A Fast RMS (3 byte IA_FAST_RMS)

→ Current A RMS value (3byte IA_RMS) → Current B RMS value (3byte IB_RMS) → Voltage RMS value (3byte V_RMS) →

electric current B Fast RMS (3 b y t e IB_F A ST_R M S)→ A Channel power value (3 byte A_W A TT)→ B Channel power value (3 byte B_WATT) __

name	byte order	content	name	byte order	content
	No			No	
Baot	0	Head (0x55)		19	B_WATT_I
ou			B_WATT		
	1	IA_FAST_RMS_I		20	B_WATT_m
IA_FAST_RMS	2	IA_FAST_RMS_m		twent	B_WATT_h
				y one	
	3	IA_FAST_RMS_h		twent	CFA_CNT_I
			CFA_CNT	y two	
	4	IA_RMS_I		23	CFA_CNT_m
IA_RMS	5	IA_RMS_m		24	CFA_CNT_h
	6	IA_RMS_h		25	CFB_CNT_I
	7	IB_RMS_I	CFB_CNT	26	CFB_CNT_m
IB_RMS	8	IB_RMS_m		27	CFB_CNT_h
	9	IB_RMS_h		28	TPS1_I
	10	V_RMS_I	TPS1	29	TPS1_m
V_RMS	11	V_RMS_m		30	0x00
	12	V_RMS_h		31	TPS2_I
	13	IB_FAST_RMS_I	TPS2	32	TPS2_m
IB_FAST_RMS	14	IB_FAST_RMS_m		33	0x00
	15	IB_FAST_RMS_h	checksum	34	checksum
	16	A_WATT_I			

Full electric parameter package format:

BL0939 内置时钟免校准计量芯片

A_WATT	17	A_WATT_m
	18	A_WATT_h

 $\label{eq:checksum} checksum = ((\mbox{ (0x5,{A4,A3,A2,A1}) + 0x55 + data1_l + data1_m + data1_h +) \ \& \ Oxff) \ and \ invert$

3.2.7 UART Interface Protection Mechanism

The $\mathsf{UART}\xspace$ communication of $\mathsf{BL0939}\xspace$ provides a timeout protection mechanism. If the interval between bytes exceeds $\mathsf{18.5mS}\xspace$, the $\mathsf{UART}\xspace$

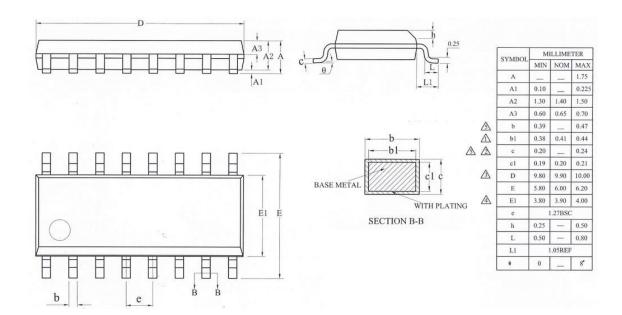
BL0939

The interface resets automatically.

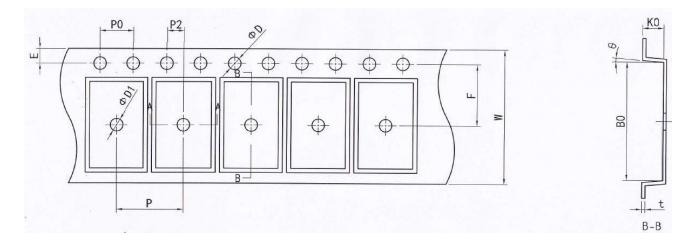
If the frame identification byte is wrong or the CHECKSUM byte is wrong, the frame data is discarded.

 $\mathsf{UART}\xspace$ module reset: $\mathsf{RX}\xspace$ pin is pulled high after the low level exceeds $\mathsf{6.65mS}\xspace$, and the $\mathsf{UART}\xspace$ module is reset.

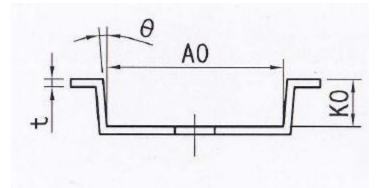
4 order information


BL0939-X X=SOP16L: SOP16L encapsulation

 $\textbf{X=SSOP20L: SSOP20L} \ package$

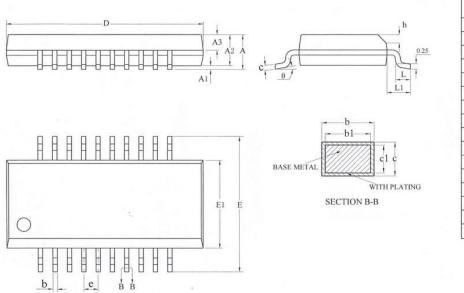

5 encapsulation

Moisture Sensitivity Level MSL 3 Warranty Period Two Years Packing method Taping packing Minimum packing 2500

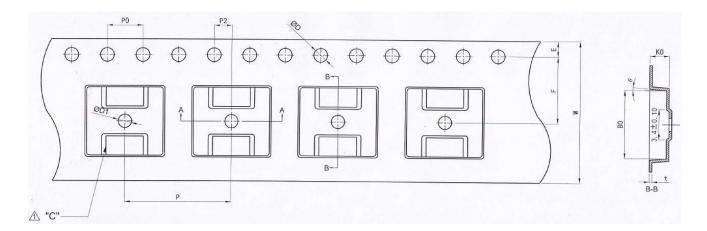

5.1 SOP16L

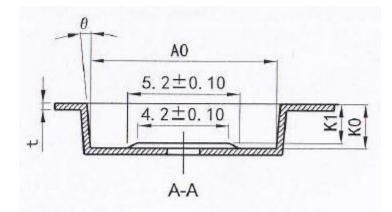
BL0939

A-A


外观	尺 寸(mm)
E	1.75±0.10
F	7.50 ± 0.05
P2	2.00±0.10
D	1.55±0.05
D1	1. 50 ^{+0. 25}
PO	4.00±0.10
10P0	40.0±0.20

\Box	袋	5	寸
_	10.180	- 1	


外观	尺 寸(mm)
W	16.00±0.30
Р	8.00±0.10
AO	6.70±0.10
BO	10.40±0.10
KO	2.10±0.10
t	0.30 ± 0.05
θ	5° TYP


5.2 SSOP20L

SYMBOL	М	ILLIMET	FER	
STMBOL	MIN	NOM	MAX	
Α	-	-	1.75	
A1	0,10	0.15	0.25	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.23	-	0.31	
b1	0.22	0.25	0.28	
с	0.20	-	0.24	
cl	0.19	0.20	0.21	
D	8.55	8.65	8.75	
Е	5.80	6.00	6.20	
EI	3.80	3.90	4.00	
e	().635BSC	3	
h	0.30	-	0.50	
L	0.50	-	0.80	
LI	1.05REF			
0	0	_	8*	

BL0939

共同尺寸

外观	尺 寸(mm)
E	1.75±0.10
F	7.50±0.10
P2	2.00±0.10
D	1.55±0.05
D1	1. 5 ^{+0. 25}
PO	4 .00±0.10
10P0	40.00±0.20

口袋尺寸 外观 尺 寸(mm) 2 16.00±0.20 W 12.00±0.10 P 3 8.40±0.10 AO \$ \$ 7.75±0.10 BO 2.50 ± 0.10 K0 t 0.30 ± 0.05 3~5° TYP θ 3 K1 2.10 ± 0.10

BL0939